Vanadium Redox Flow Batteries are a promising technology for stationary energy storage applications; the interest towards this technology has grown in recent years due to the development of non-programmable renewable sources as solar and wind. The coupling of this energy sources with a storage system is fundamental to guarantee a safe and reliable grid operation, avoiding also the waste of energy overproduction. Despite their numerous advantages, as the high efficiency, the fast response time and the long useful life, nowadays VRFB still present some limits, as the low energy density or the cost, not in line with market requirements. Therefore this work focuses on a field in which there is still a wide room of improvement, aiming to deepen the understanding of the fluid-dynamic and the electrochemical phenomena governing the operations of VRFB. An experimental campaign has been carried out at the MRT Fuel Cell Lab of Politecnico di Milano. The interest towards the study of the sources of loss at the only anode and at the only cathode of the battery brought to the utilization of a device called “symmetric cell” [1] in its positive and negative configurations. Polarization Curves and Electrochemical Impedance Spectroscopy were performed on these devices utilizing segmented flow fields and current collectors, to be able to observe the local behaviour of the cells. The overall configuration of a VRFB was then taken into exam to verify if the information about the anode and the cathode, acquired through the two symmetric devices, are significant to describe the overall battery. Afterword a 3D, steady-state physical model on ANSYS® Fluent was created and validated to simulate the behaviour of the two symmetric cells and of the overall one. This model, based on an existing one created during a previous thesis work for a half-cell, was used to interpret the experimental results remained without a strong explanation after the experimental campaign.
Le batterie a flusso di vanadio sono una tecnologia promettente per le applicazioni stazionarie di accumulo dell'energia; l'interesse per questa tecnologia è cresciuto negli ultimi anni a causa dello sviluppo di fonti rinnovabili non programmabili come il solare e l’eolico. La connessione di queste fonti energetiche a un sistema di stoccaggio è fondamentale per garantire operazioni di rete sicure e affidabili, nonché evitare la perdita di sovrapproduzione di energia. Nonostante i numerosi vantaggi, quali alta efficienza, tempi di risposta rapidi e lunga vita utile, oggi le VRFB presentano ancora alcune limitazioni, come la bassa densità energetica o il costo, che non soddisfa i requisiti del mercato. Pertanto, questo lavoro si concentra su un campo in cui ci sono ancora ampi margini di miglioramento, con l'obiettivo di approfondire la comprensione dei fenomeni fluidodinamici ed elettrochimici che regolano le operazioni delle VRFB. Un campagna sperimentale è stata condotta presso l’MRT Fuel Cell Lab del Politecnico di Milano; l'interesse nello studio delle perdite del solo anodo e del solo catodo della batteria ha portato all'utilizzo di un dispositivo chiamato "cella simmetrica"[1] nelle sue configurazioni positiva e negativa. Curve di polarizzazione e spettroscopia di impedenza elettrochimica sono state eseguite su questi dispositivi utilizzando distributori e collettori di corrente segmentati per essere in grado di osservare il comportamento locale delle celle. La configurazione generale di un VRFB è stata quindi analizzata per verificare se le informazioni sull'anodo e sul catodo acquisite attraverso i due dispositivi simmetrici sono significative per la descrizione della batteria complessiva. Dopodiché, un modello fisico 3D in stato stazionario è stato creato attraverso il software ANSYS® Fluent, per simulare il comportamento delle due celle simmetriche e di quella generale. Questo modello, basato su uno esistente creato durante il precedente lavoro di tesi per una semicella, è stato utilizzato per interpretare i risultati sperimentali rimasti senza una forte spiegazione dopo l’analisi sperimentale.
Local investigation of performance heterogeneity in a vanadium redox flow bBatteries, coupling experimental and CFD analyses
CEREDA, STEFANO
2017/2018
Abstract
Vanadium Redox Flow Batteries are a promising technology for stationary energy storage applications; the interest towards this technology has grown in recent years due to the development of non-programmable renewable sources as solar and wind. The coupling of this energy sources with a storage system is fundamental to guarantee a safe and reliable grid operation, avoiding also the waste of energy overproduction. Despite their numerous advantages, as the high efficiency, the fast response time and the long useful life, nowadays VRFB still present some limits, as the low energy density or the cost, not in line with market requirements. Therefore this work focuses on a field in which there is still a wide room of improvement, aiming to deepen the understanding of the fluid-dynamic and the electrochemical phenomena governing the operations of VRFB. An experimental campaign has been carried out at the MRT Fuel Cell Lab of Politecnico di Milano. The interest towards the study of the sources of loss at the only anode and at the only cathode of the battery brought to the utilization of a device called “symmetric cell” [1] in its positive and negative configurations. Polarization Curves and Electrochemical Impedance Spectroscopy were performed on these devices utilizing segmented flow fields and current collectors, to be able to observe the local behaviour of the cells. The overall configuration of a VRFB was then taken into exam to verify if the information about the anode and the cathode, acquired through the two symmetric devices, are significant to describe the overall battery. Afterword a 3D, steady-state physical model on ANSYS® Fluent was created and validated to simulate the behaviour of the two symmetric cells and of the overall one. This model, based on an existing one created during a previous thesis work for a half-cell, was used to interpret the experimental results remained without a strong explanation after the experimental campaign.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Cereda.pdf
solo utenti autorizzati dal 13/04/2019
Descrizione: Testo della tesi
Dimensione
4.21 MB
Formato
Adobe PDF
|
4.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139666