The experimental tests, done in isothermal conditions where the fuel flow has been substituted with air one and kept constant in all the test cases, has been executed by S-PIV and LDV measurement techniques. The main influencing parameter is the split ratio of the secondary flow; increasing it, the vortex breakdown is fully developed and it is attached to the nozzle, the swirl number rises up, the rms of the velocity fluctuations are shifted from the jet axis to the external part of the jet. At high secondary split ratio, the effect of the premix split ratio is investigated, determining the amount of the recirculated mass flow, the width of the back-flow region and its velocity along the centerline; the highest velocity are obtained at highest premix split ratio, while the biggest recirculation zone and the higher amount of mass flow are obtained at intermediate premix split ratio. For these cases, the POD and the spectral analysis are executed in order to identifiy the presence of coherent structures. An analytical model has been developed to evaluate to correlate the swirl number to the geometrical one; it is based on the conservation of the the axial flux of the angular momentum and the plug-flow profile at the nozzle outlet. It good approximate the weak swirling jets while it fails at the high swirl number because of the velocity gradient. In the present analysis it has been performed the first step of the development of a numerical model in order to simulate the burner in exam, in the combustion process and the starting point is the modelisation of the cold-flow. Due to the presence of complex, unsteady and strongly 3D phenomena involved, it has been chosen to perform a Detatched Eddy Simulation, which retains the accuracy of a Large Eddy Simulation with the less computational effort of a Reynolds-Averaged simulation. It has been chosen a significative case from the experimental campaign and the same, double-swirl configuration has been reproduced in the numerical model. Every numerical model requires validation with respect to the experimental data, therefore a lot of attention has been devoted to the comparison between the simulated velocity field and the experimental data. The comparison has been performed both with the S-PIV and the LDV experimental data, either on the time-averaged flow field or in the frequency domain, with a good agreement between the model and the experimental data. Additionally, both the LDV experimental data and the numerical model showed the presence of a periodic phenomenon in the proximity of the gas gun, the Strouhal number of which is equal to 0.22. This value confirms the observations made in literature for single-swirl annular jet and shows that the same conclusions may be extended, in this case, also to the double-swirl configuration. Finally, since the numerical model showed a good agreement with the experimental data in the frequency domain, at least at the lowest frequencies, it has been chosen to deepen the analysis of the periodic phenomenon from the numerical point of view. It has been performed either the POD analysis or the phase-average analysis on the numerical, instantaneous and time-resolved velocity field. The POD analysis showed the presence of a coherent structure in the proximity of the gas-gun and the phase-average technique put in evidence the shape of the coherent structure, present in the numerical solution.
Le prove sperimentali sono state eseguite in condizioni isoterme tramite tecniche S-PIV e LDV, sostituendo la portata di combustibile con una sostitudiva d'aria e mantenuta costante in ogni prova, e variando i principali parametri operativi che sono lo split ratio del flusso di premix, lo split ratio del getto secondario e il numero di Reynolds. I risultati mostrano una forte dipendenza dallo split ratio del getto secondario che, aumentando, porta a una struttura centrale di ricircolo attaccata all'efflusso del bruciatore ed estesa lungo tutto il campo di vista, un incremento del numero di swirl e una distribuzione delle fluttuazione di velocità più marcata alla periferia del getto. Per i casi ad alto split ratio secondario e alto Reynolds, gli effetti dello split ratio di premix sono indagati, analizzando le variazioni di forma della zona di ricircolo, la portata di gas ricircolata e le velocità lungo l'asse del getto; inoltre, l'analisi POD e l'analisi spettrale sono eseguite per identificare la possibile presenza di strutture coerenti. In aggiunta, un modello analitico è stato sviluppato per determinare il numero di swirl geometrico e relazionarlo a numero di swirl; questo modello è basato sulla conservazione del flusso assial del momento angolare lungo il generatore di swirl e sull'ipotesi di profili di velocità assiali costanti all'efflusso. I risultati mostrano un buon accordo a bassi gradi di swirl mentre ciò non è vero ad alti valori visto che il modello non predice gli effetti dei gradienti di velocità che si instaurano in queste condizioni. Nella presente analisi è stato compiuto il primo passo verso lo sviluppo di un modello più complesso per simulare il comportamento in combustione del bruciatore in esame ed il punto di partenza è stata la modellazione a freddo del bruciatore. Vista la presenza di fenomeni fortemente tridimensionali e fortemente non stazionari, si è optato per una simulazione di tipo Detatched Eddy, che consente di ritenere l'accuratezza di un modello Large Eddy al ridotto costo computazionale di un modello Reynolds-Averaged. E' stato scelto un caso significativo tra quelli compresi nella campagna sperimentale e si è cercato di riprodurre la stessa configurazione in doppio swirl. Ogni modello numerico richiede la validazione con i dati sperimentali; per questo motivo è stata dedicata particolare attenzione al paragone tra il campo di velocità simulato ed i dati sperimentali. Il paragone con i dati sperimentali è stato svolto sia con il sistema S-PIV, sia con il sistema LDV; il paragone è stato inoltre effettuato sia per quanto riguarda il campo mediato nel tempo, sia per quanto riguarda l'analisi in frequenza con un buon accordo con i dati sperimentali. Inoltre, sia i dati LDV sia il modello numeric hanno mostrato la presenza di un fenomeno periodico in corrispondenza del gas-gun, il cui numero di Strouhal è 0.22. Il valore conferma le precedenti esperienze in letteratura per getti singoli anulari. Per questo particolare caso, quindi, è possibile estendere le osservazioni valide per i getti swirlati singoli anche al getto swirlato doppio. Infine, visto che il modello numerico mmostra buon accordo con i dati nello spettro delle frequenze, si è deciso di fare un' analisi POD ed una media in fase sul campo numerico. Queste analisi hanno messo in evidenza la presenza di una struttura coerente in prossimità del gas-gun.
Experimental and numerical analysis of a double swirl burner under isothermal conditions
FRANCABANDIERA, ANTONIO;ZAMPINI, LUCA
2017/2018
Abstract
The experimental tests, done in isothermal conditions where the fuel flow has been substituted with air one and kept constant in all the test cases, has been executed by S-PIV and LDV measurement techniques. The main influencing parameter is the split ratio of the secondary flow; increasing it, the vortex breakdown is fully developed and it is attached to the nozzle, the swirl number rises up, the rms of the velocity fluctuations are shifted from the jet axis to the external part of the jet. At high secondary split ratio, the effect of the premix split ratio is investigated, determining the amount of the recirculated mass flow, the width of the back-flow region and its velocity along the centerline; the highest velocity are obtained at highest premix split ratio, while the biggest recirculation zone and the higher amount of mass flow are obtained at intermediate premix split ratio. For these cases, the POD and the spectral analysis are executed in order to identifiy the presence of coherent structures. An analytical model has been developed to evaluate to correlate the swirl number to the geometrical one; it is based on the conservation of the the axial flux of the angular momentum and the plug-flow profile at the nozzle outlet. It good approximate the weak swirling jets while it fails at the high swirl number because of the velocity gradient. In the present analysis it has been performed the first step of the development of a numerical model in order to simulate the burner in exam, in the combustion process and the starting point is the modelisation of the cold-flow. Due to the presence of complex, unsteady and strongly 3D phenomena involved, it has been chosen to perform a Detatched Eddy Simulation, which retains the accuracy of a Large Eddy Simulation with the less computational effort of a Reynolds-Averaged simulation. It has been chosen a significative case from the experimental campaign and the same, double-swirl configuration has been reproduced in the numerical model. Every numerical model requires validation with respect to the experimental data, therefore a lot of attention has been devoted to the comparison between the simulated velocity field and the experimental data. The comparison has been performed both with the S-PIV and the LDV experimental data, either on the time-averaged flow field or in the frequency domain, with a good agreement between the model and the experimental data. Additionally, both the LDV experimental data and the numerical model showed the presence of a periodic phenomenon in the proximity of the gas gun, the Strouhal number of which is equal to 0.22. This value confirms the observations made in literature for single-swirl annular jet and shows that the same conclusions may be extended, in this case, also to the double-swirl configuration. Finally, since the numerical model showed a good agreement with the experimental data in the frequency domain, at least at the lowest frequencies, it has been chosen to deepen the analysis of the periodic phenomenon from the numerical point of view. It has been performed either the POD analysis or the phase-average analysis on the numerical, instantaneous and time-resolved velocity field. The POD analysis showed the presence of a coherent structure in the proximity of the gas-gun and the phase-average technique put in evidence the shape of the coherent structure, present in the numerical solution.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
35.57 MB
Formato
Adobe PDF
|
35.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139677