The aim of this research was, in-depth, study of the surface treatment of Aluminium alloy which is widely used in industry in many important applications. Aluminium has some excellent properties, which make it one of the best choice for many industrial applications. Our attention was the surface treatment of Aluminium fins, since they might undergo under strong corrosion. In fact, water condensates on the fins of a heat exchangers, activating oxidative corrosion. Moreover, the fins are closely packed, and water clogging between two subsequent fins causes changes of heat transfer coefficient and blocks the circulation of air which directly effects the phenomena of convectional heat exchange. In our case, we may apply an hydrophilic films to avoid water to stay on the surface and disturb the heat transfer phenomena. We make the surface water attracting, with binder with high surface energy to induce the water spreading over surface rather than forming a stable drop that has a greater thickness influencing the heat transmission. Other approach could be the modification of the surface roughness of a film by addition of some inorganic additive like silica which also give higher spreading factors. By using, either a hydrophilic organic binder or, an inorganic additive to a common binder, we enhance hydro-philicity. Our first goal was to make surface super-hydrophilic and, secondly, we have to keep in mind the surface after treatment have anti-corrosion tendency and this treatment is long lasting. We have used different techniques for the development of coating formulations and the applications, many materials i.e. polymers , solvents and different curing approaches to achieve our objective of developing a coating, with higher surface energy, which could be useful in this particular application. Application rod, on 2 µm, was used for the application of all the films to make sure the thickness remains lower followed by fast thermal curing. The properties and performance of the hydrophilic coating were examined by Optical Contact Angle (OCA) test and Fourier Transformed Infrared (FTIR) Spectroscopy. OCA test was useful to have contact angle values and examining the variation and consistency of contact angles with time under the microscope. In some cases, we saw very low contact angles like 10° but in some cases they were high above 80°. From chemical structure point of view, IR spectra reported that hydrophilicity of the coating corresponds to the presence of polar groups e.g. hydroxyl, –OH, Silanol, Si–OH, and amine, –NH2 and it was observed that increasing these polar groups increase the surface energy of the film which helps to overcome the surface tension of water drops.
L'obiettivo di questa ricerca è stato lo studio del trattamento superficiale di una lega di alluminio che è ampiamente utilizzata nell'industria in molte importanti applicazioni. L'alluminio ha alcune proprietà eccellenti, che lo rendono una delle scelte migliori per molte applicazioni industriali. La nostra attenzione era rivolta al trattamento superficiale delle alette in alluminio usate negli scambiatori di calore poiché sono soggette a forte corrosione. Infatti, l'acqua condensa sulle alette di uno scambiatore di calore attivando l'ossidazione della corrosione. Inoltre, le alette sono strettamente assemblate e l'intasamento dell'acqua tra due pinne vicine provoca variazioni del coefficiente di trasmissione del calore. Nel nostro caso possiamo applicare un film idrofilico per evitare che l'acqua rimanga sulla superficie e disturbi i fenomeni di trasferimento del calore. Possaimo far scivolare l'acqua superficiale, con leganti ad alta energia superficiale, per indurre l'acqua a diffondersi sulla superficie piuttosto che formare una goccia stabile che ha maggiore spessore e dunque una minore conduzione termica. Un altro approccio potrebbe essere la modifica della rugosità della superficie di un film mediante l'aggiunta di alcuni additivi inorganici come la silice che forniscono anche buoni fattori di diffusione più elevati. Usando sia un legante organico idrofilico o un additivo inorganico a un legante comune, miglioriamo l'idrofilicità della superfice. Il nostro primo obiettivo era quello di rendere superidrofilica la superficie ma, in secondo luogo, occorre tenere presente che la superficie dopo il trattamento deve aver proprietà di protezione contro la corrosione anticorrosione e in modo stabile e duraturo. Abbiamo utilizzato diverse tecniche di sviluppo delle formulazioni di rivestimento e delle applicazioni, molti materiali: polimeri, solventi e diversi approcci di polimerizzazione per raggiungere il nostro obiettivo di sviluppare un rivestimento, con un'elevata energia superficiale, che potrebbe essere utile in questa particolare applicazione. Per applicare tutte le pellicole è stata utilizzata un'asta di applicazione su 2 μm per assicurarsi che lo spessore rimanga più basso seguito da una rapida polimerizzazione termica. Le proprietà e le prestazioni del rivestimento idrofilo sono state esaminate dal test “Optical Contact Angle” (OCA) e dalla spettroscopia a infrarossi trasformata di Fourier (FTIR). Il test OCA era utile per avere valori di angolo di contatto ed esaminare la variazione e la consistenza degli angoli di contatto con il tempo al microscopio. In alcuni casi, abbiamo visto angoli di contatto molto bassi come 10 ° ma in alcuni casi erano alti sopra gli 80 °. Dal punto di vista della struttura chimica, gli spettri IR hanno riportato che l'idrofilia del rivestimento corrisponde alla presenza di gruppi polari per es. idrossile, -OH, Silanolo, Si-OH e ammina, -NH2 ed è stato osservato che l'aumento di questi gruppi polari aumenta l'energia superficiale del film che aiuta a superare la tensione superficiale delle gocce d'acqua.
Development of a stable, anti-corrosive and super-hydrophilic coating for aluminium fins used in heating coils
AMIN, SABA
2016/2017
Abstract
The aim of this research was, in-depth, study of the surface treatment of Aluminium alloy which is widely used in industry in many important applications. Aluminium has some excellent properties, which make it one of the best choice for many industrial applications. Our attention was the surface treatment of Aluminium fins, since they might undergo under strong corrosion. In fact, water condensates on the fins of a heat exchangers, activating oxidative corrosion. Moreover, the fins are closely packed, and water clogging between two subsequent fins causes changes of heat transfer coefficient and blocks the circulation of air which directly effects the phenomena of convectional heat exchange. In our case, we may apply an hydrophilic films to avoid water to stay on the surface and disturb the heat transfer phenomena. We make the surface water attracting, with binder with high surface energy to induce the water spreading over surface rather than forming a stable drop that has a greater thickness influencing the heat transmission. Other approach could be the modification of the surface roughness of a film by addition of some inorganic additive like silica which also give higher spreading factors. By using, either a hydrophilic organic binder or, an inorganic additive to a common binder, we enhance hydro-philicity. Our first goal was to make surface super-hydrophilic and, secondly, we have to keep in mind the surface after treatment have anti-corrosion tendency and this treatment is long lasting. We have used different techniques for the development of coating formulations and the applications, many materials i.e. polymers , solvents and different curing approaches to achieve our objective of developing a coating, with higher surface energy, which could be useful in this particular application. Application rod, on 2 µm, was used for the application of all the films to make sure the thickness remains lower followed by fast thermal curing. The properties and performance of the hydrophilic coating were examined by Optical Contact Angle (OCA) test and Fourier Transformed Infrared (FTIR) Spectroscopy. OCA test was useful to have contact angle values and examining the variation and consistency of contact angles with time under the microscope. In some cases, we saw very low contact angles like 10° but in some cases they were high above 80°. From chemical structure point of view, IR spectra reported that hydrophilicity of the coating corresponds to the presence of polar groups e.g. hydroxyl, –OH, Silanol, Si–OH, and amine, –NH2 and it was observed that increasing these polar groups increase the surface energy of the film which helps to overcome the surface tension of water drops.File | Dimensione | Formato | |
---|---|---|---|
2018_04_HABIB_842107.pdf
accessibile in internet per tutti
Descrizione: Final Thesis Report
Dimensione
4.17 MB
Formato
Adobe PDF
|
4.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139727