The increasing power of calculation of modern computers is allowing the use of new and more powerful equations to describe the behavior of complex equipment in the chemical industry. Such equipment, like bioreactors, slurry-bubble columns and other multiphase machinery, is better modeled using the population balance equation; in particular liquid-liquid or gas-liquid systems get bene ts from this new balance. The population balance equation is composed of numerous terms; since the attention is focused on two uid phases it is natural to imagine one continuous phase with the other one dispersed in form of droplets inside. The interaction between two droplets immersed in a continuum medium involves collisions that can yield a rebound, a breakage of one of the two droplets or the coalescence of both; it is also possible that, under the shear stress of the moving uid a single drop breaks up. Coalescence of droplets is by far the most complex phenomena of the ones cited above: a series of di erent models has been created and validated in the last decades. The best model available now is the lm drainage model: this work is focused on its theoretical derivation in every detail and an explanation of the long cited surface mobility, that has never been clearly explained in one single literature source. Then a numerical solution of this model has been created using a di erent numerical technique with respect to the literature: it has been decided to use a spectral numerical method with the target to increase the accuracy of the solution while reducing the computational time to obtain it.
La crescente potenza di calcolo dei moderni computer permette l'uso di nuove e pi u potenti equazioni per descrivere il comportamento di apparecchiature complesse dell'industria chimica. Queste apparecchiature, come i bioreattori, colonne di uidi contenenti solidi sospesi e bolle gassose e altre apparecchiature multifasiche, sono modellate al meglio usando il bilancio di popolazione; in particolare i sistemi liquido-liquido e gas-liquido traggono bene cio da questa nuova equazione. Il bilancio di popolazione e composto da numerosi termini; poich e l'attenzione e concentrata su due fasi uide e facile intuire la presenza di una fase continua e di una seconda dispersa al suo interno sotto forma di gocce. L'interazione tra queste gocce immerse in una fase continua coinvolge collisioni che possono portare a rimbalzo, rottura di una delle gocce o alla coalescenza delle gocce in una sola; e anche possibile che una singola goccia si rompa sotto lo sforzo esercitato dal movimento della fase continua. Il fenomeno sicuramente pi u complesso di quelli sopra elencati e la coalescenza: una serie di modelli sono stati creati e validati nelle ultime decadi. Il miglio modello attualmente disponibile e il modello di drenaggio del lm: questo lavoro e incentrato sulla derivazione teorica in ogni suo dettaglio e nella spiegazione della mobilit a dell'interfaccia, spesso citata ma mai spiegata in maniera esaustiva in una singola fonte letteraria. Dopodich e e stata sviluppata una soluzione numerica del modello ottenuto usando un metodo numerico di erente da quanto si trova in letteratura: e stato deciso di usare un metodo numerico spettrale con l'obiettivo di aumentare la precisione della soluzione riducendo al tempo stesso il tempo computazionale necessario per ottenere la soluzione stessa.
The film drainage model to predict the coalescence terms inside the population balance equation
PILONI, MARCO
2017/2018
Abstract
The increasing power of calculation of modern computers is allowing the use of new and more powerful equations to describe the behavior of complex equipment in the chemical industry. Such equipment, like bioreactors, slurry-bubble columns and other multiphase machinery, is better modeled using the population balance equation; in particular liquid-liquid or gas-liquid systems get bene ts from this new balance. The population balance equation is composed of numerous terms; since the attention is focused on two uid phases it is natural to imagine one continuous phase with the other one dispersed in form of droplets inside. The interaction between two droplets immersed in a continuum medium involves collisions that can yield a rebound, a breakage of one of the two droplets or the coalescence of both; it is also possible that, under the shear stress of the moving uid a single drop breaks up. Coalescence of droplets is by far the most complex phenomena of the ones cited above: a series of di erent models has been created and validated in the last decades. The best model available now is the lm drainage model: this work is focused on its theoretical derivation in every detail and an explanation of the long cited surface mobility, that has never been clearly explained in one single literature source. Then a numerical solution of this model has been created using a di erent numerical technique with respect to the literature: it has been decided to use a spectral numerical method with the target to increase the accuracy of the solution while reducing the computational time to obtain it.File | Dimensione | Formato | |
---|---|---|---|
2018_4_Piloni.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139759