Nowadays the greenhouse effect caused by the high CO2 concentration in atmosphere is one of the most critical issue in our society. The utilization of this molecule as carbon source for the production of added-value products is considered and different processes has been proposed. The CO2 hydrogenation to CH4 is the most promising. This reaction is included in the Power To Gas technology that allows to combine the utilization of the excess of renewable electric energy, which otherwise would be lost, with the reduction of CO2 concentration, producing a fuel with a wide market and easy to store. The CO2 methanation is highly exothermic and limited by thermodynamics at high temperatures. The Ni-based catalyst are actually used in fixed bed reactors, but their high working temperatures reduces the efficiency of the system. In addition, at high temperatures, CO selectivity is relatively high. To enhance the productivity of industrial reactors, Ru-based catalysts are actually tested and characterized, since they are active at lower temperatures, favoring the thermodynamic of the system. In this condition, the conversion increases and the selectivity to CO is further reduced. To optimize the efficiency of the industrial reactors, the effect of the size of catalytic pellet, combined with different active phase loading have been investigated, in order to evaluate the possible presence of intraphase (mass and heat) diffusional limitations, which are undesired in the industrial reactors. For this purpose, -alumina spheres of various diameters (100, 800 and 2300 m) have been impregnated with 0.5 and 5wt.% of Ru. Applying a conventional incipient wetness impregnation, eggshell catalyst on supports bigger than 100 m for low Ru loadings (0.5 wt.%) have been produced. An increased in the acidity of the impregnating solution is required in order to obtain homogeneously impregnated pellets. The prepared catalysts, both the spheres and powdered form, have been tested under industrial operative conditions. The results with 0.5 wt.% of Ru demonstrate that no significant differences in the catalytic activity occurs increasing the pellet size up to 2300m, while using 5 wt.% of Ru, conversion and selectivity are affected by internal mass/heat transfer limitations when using big pellets homogeneously impregnated. To confirm the presence of intraphase transfer limitation, non-linear regressions have been performed using two kinetic equation, in order to estimate the kinetic parameters of the reaction. As expected, the apparent activation energy of the 2300m spheres is approximately half of the activation energy of the chemical regime exhibited by the powder
L’effetto serra causato dalle alte concentrazioni di CO2 in atmosfera è una delle maggiori problematiche nella nostra società. L’utilizzo di questa molecola come fonte di carbonio per la produzione di prodotti dal valore aggiunto è considerata e diversi processi sono stati proposti. L’idrogenazione di CO2 per produrre CH4 è la più promettente. Essa rappresenta uno step del processo Power To Gas, che permette di utilizzare gli eccessi di energia rinnovabile, che andrebbero in alternativa persi, combinandoli con un processo di abbattimento della CO2. La metanazione di CO2 è un processo molto esotermico e limitato dalla termodinamica ad alte temperature. Catalizzatori a base di Nichel vengono attualmente utilizzati in reattori a letto fisso, ma poiché sono attivi ad alta temperatura, l’efficienza del sistema non è elevata. In queste condizioni anche la selettività a CO non è trascurabile. Per aumentare la produttività, catalizzatori a base di Rutenio sono attualmente in fase di studio, poiché sono attivi a temperature minori e aumentano di conseguenza la conversione di CO2, riducendo la selettività a CO. Per ottimizzare il processo, è stato studiato l’effetto della dimensioni dei pellet a diversi carichi di fase attivi, in modo da poter valutare la presenza di limitazioni intrafase di massa e/o calore. Per questo scopo, sfere di -allumina di vario diametro (100, 800 and 2300 m) sono state impregnate con 0.5 e 5 wt.% di rutenio. Utilizzando una impregnazione dry con bagnamento incipiente, supporti di dimensioni maggiori di 100 m hanno portato alla formazione di catalizzatori eggshell per un carico di rutenio di 0.5 wt.%. Per ottenere un catalizzatore uniformemente impregnato, è richiesto un aumento dell’acidità nella soluzione impregnante. I catalizzatori preparati sono stati testate nelle tipiche condizioni operative industriali. I risultati con lo 0.5 wt.% di Ru non hanno evidenziato differenze nell’attività catalitica, mentre usando il 5 wt.% di Ru, problemi di limitazioni diffusive intrafase sono apparsi usando pellet di grandi dimensioni. Per confermare questa ipotesi, sono state eseguite delle regressioni non lineari, usando due equazioni cinetiche diverse, in modo da stimare I parametri cinetici della reazione. Come previsto, l’energia di attivazione apparente delle sfere da 2300m è la metà rispetto a quella ottenuta in regime chimico dalla polvere.
Preparation and characterization of Ruthenium-based catalysts for CO2 methanation
MARIANI, MARCO
2017/2018
Abstract
Nowadays the greenhouse effect caused by the high CO2 concentration in atmosphere is one of the most critical issue in our society. The utilization of this molecule as carbon source for the production of added-value products is considered and different processes has been proposed. The CO2 hydrogenation to CH4 is the most promising. This reaction is included in the Power To Gas technology that allows to combine the utilization of the excess of renewable electric energy, which otherwise would be lost, with the reduction of CO2 concentration, producing a fuel with a wide market and easy to store. The CO2 methanation is highly exothermic and limited by thermodynamics at high temperatures. The Ni-based catalyst are actually used in fixed bed reactors, but their high working temperatures reduces the efficiency of the system. In addition, at high temperatures, CO selectivity is relatively high. To enhance the productivity of industrial reactors, Ru-based catalysts are actually tested and characterized, since they are active at lower temperatures, favoring the thermodynamic of the system. In this condition, the conversion increases and the selectivity to CO is further reduced. To optimize the efficiency of the industrial reactors, the effect of the size of catalytic pellet, combined with different active phase loading have been investigated, in order to evaluate the possible presence of intraphase (mass and heat) diffusional limitations, which are undesired in the industrial reactors. For this purpose, -alumina spheres of various diameters (100, 800 and 2300 m) have been impregnated with 0.5 and 5wt.% of Ru. Applying a conventional incipient wetness impregnation, eggshell catalyst on supports bigger than 100 m for low Ru loadings (0.5 wt.%) have been produced. An increased in the acidity of the impregnating solution is required in order to obtain homogeneously impregnated pellets. The prepared catalysts, both the spheres and powdered form, have been tested under industrial operative conditions. The results with 0.5 wt.% of Ru demonstrate that no significant differences in the catalytic activity occurs increasing the pellet size up to 2300m, while using 5 wt.% of Ru, conversion and selectivity are affected by internal mass/heat transfer limitations when using big pellets homogeneously impregnated. To confirm the presence of intraphase transfer limitation, non-linear regressions have been performed using two kinetic equation, in order to estimate the kinetic parameters of the reaction. As expected, the apparent activation energy of the 2300m spheres is approximately half of the activation energy of the chemical regime exhibited by the powderFile | Dimensione | Formato | |
---|---|---|---|
Thesis MARCO MARIANI SECONDA CONSEGNA-04.04.18-CARICATA ONLINE.pdf
non accessibile
Dimensione
5.38 MB
Formato
Adobe PDF
|
5.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139766