Helicopter vibrations are detrimental for different reasons: they generate variable stresses in structural components, decrease crew and passenger comfort, cause difficulty in reading instruments, and reduce effectiveness of weapon systems and onboard electronics. The main source of helicopter vibration is the rotation of the rotor blades, that transfer harmonic loads to the rotor, and hence to the cockpit and to the pilot, at a frequency that is multiple of the mast angular velocity. Different systems, both active and passive, have been developed to damp out these vibrations and to increase the level of comfort of the helicopter. Passive systems could have been a good solution when the rotor angular velocity was kept constant, but nowadays the tendency of moving to rotors with variable angular velocity make active systems intrinsically better. The present thesis, developed in collaboration with Leonardo Helicopters, regards the design of a semi-active tuned mass damper system to be placed directly inside the main rotor of a five-bladed helicopter, able to effectively counteract vibrations along the vertical axis, at two different frequencies. The resulting mechatronic system, in addition to the mechanical part, is made of a sensor, a control unit and an actuator. The control unit sends a signal to the actuator when a variation in the rotor angular velocity is detected by the sensor, in order to adjust the device frequency to the vibration one. The active component is made of an electromagnetic actuator whose aim is to vary the mass of the system between two opportunely tuned values that come from the two main angular rotations of the mast. A finite elements analysis has been performed in order to tune the system at the required frequencies, taking into account also the influence of the springs mass on the overall system frequency. The actuator design has been accomplished through magnetic finite elements simulations. The overall design of the device has been carried out considering the company requirements in terms of weight limitations and geometrical constraints, together with cost restraints. The design of the system includes also the selection of electronic devices compatible with the installation on a real helicopter. A structural assessment is finally performed on the system.
Le vibrazioni negli elicotteri sono deleterie per diversi motivi: esse generano sforzi variabili nei componenti strutturali, riducono il comfort di piloti e passeggeri, causano difficoltà nella lettura della strumentazione e riducono l’efficacia degli armamenti e dell’elettronica a bordo. La principale causa delle vibrazioni negli elicotteri è la rotazione delle pale che trasmettono carichi variabili al rotore, e di conseguenza alla cabina di pilotaggio e agli stessi piloti, ad una frequenza multiplo della velocità angolare del rotore. Diversi sistemi, attivi e passivi, sono stati sviluppati per eliminare queste vibrazioni e aumentare il livello di comfort percepito negli elicotteri. I sistemi passivi sono stati un’ottima soluzione quando la velocità di rotazione del rotore era costante, ma l’attuale tendenza ad avere rotori con velocità angolare variabile rende i sistemi attivi intrinsecamente migliori. Questa tesi, realizzata in collaborazione con Leonardo Elicotteri, ha come oggetto la progettazione di un assorbitore dinamico semi attivo da inserire direttamente all’interno del rotore di un elicottero dotato di cinque pale, in grado di contrastare le vibrazioni in direzione assiale, a due frequenze differenti. Il sistema meccatronico risultante, oltre alla parte meccanica, è composto da un sensore, da un’unità di controllo e da un attuatore. L’unità di controllo ha il compito di mandare un segnale all’attuatore quando una variazione nella velocità angolare del rotore viene individuata dal sensore, in modo da adattare la frequenza del sistema a quella delle vibrazioni. La componente attiva è rappresentata da un attuatore elettromagnetico che ha il compito di variare la massa del sistema tra due valori opportunamente selezionati in base alle due principali velocità di rotazione del rotore. Per tunare il sistema alle frequenze prestabilite è stata effettuata un’analisi a elementi finiti che tiene conto anche dell’influenza che ha il peso delle molle sulla frequenza complessiva del sistema. L’elettromagnete è stato progettato tramite simulazioni con elementi finiti magnetici. Le esigenze dell’azienda in termini di peso limitato e vincoli geometrici e di costo sono state tenute in considerazione durante la progettazione dell’intero dispositivo. La progettazione del dispositivo comprende anche la selezione di componenti elettronici compatibili con l’installazione del sistema su un elicottero reale. Una verifica strutturale è stata infine realizzata sul sistema.
Design of a semi-active TMD for vertical vibration control in helicopter rotors
GAMACCHIO, GIOVANNI ALESSANDRO
2016/2017
Abstract
Helicopter vibrations are detrimental for different reasons: they generate variable stresses in structural components, decrease crew and passenger comfort, cause difficulty in reading instruments, and reduce effectiveness of weapon systems and onboard electronics. The main source of helicopter vibration is the rotation of the rotor blades, that transfer harmonic loads to the rotor, and hence to the cockpit and to the pilot, at a frequency that is multiple of the mast angular velocity. Different systems, both active and passive, have been developed to damp out these vibrations and to increase the level of comfort of the helicopter. Passive systems could have been a good solution when the rotor angular velocity was kept constant, but nowadays the tendency of moving to rotors with variable angular velocity make active systems intrinsically better. The present thesis, developed in collaboration with Leonardo Helicopters, regards the design of a semi-active tuned mass damper system to be placed directly inside the main rotor of a five-bladed helicopter, able to effectively counteract vibrations along the vertical axis, at two different frequencies. The resulting mechatronic system, in addition to the mechanical part, is made of a sensor, a control unit and an actuator. The control unit sends a signal to the actuator when a variation in the rotor angular velocity is detected by the sensor, in order to adjust the device frequency to the vibration one. The active component is made of an electromagnetic actuator whose aim is to vary the mass of the system between two opportunely tuned values that come from the two main angular rotations of the mast. A finite elements analysis has been performed in order to tune the system at the required frequencies, taking into account also the influence of the springs mass on the overall system frequency. The actuator design has been accomplished through magnetic finite elements simulations. The overall design of the device has been carried out considering the company requirements in terms of weight limitations and geometrical constraints, together with cost restraints. The design of the system includes also the selection of electronic devices compatible with the installation on a real helicopter. A structural assessment is finally performed on the system.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
5.25 MB
Formato
Adobe PDF
|
5.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139896