Helicopters are vehicles subject to significant vibration problems which entail reduced comfort and can affect the fatigue life of some components. The principal cause of vibrations is the main rotor which transmits alternate loads to the fuselage with frequencies multiple of the angular speed of the rotor itself. Among the most stressed elements, there is the horizontal stabilizer which, due to its composite structure, is light and characterized by a low damping. This thesis, realized in collaboration between the Politecnico di Milano and the Helicopters division of Leonardo S.p.A, is intended to design a specific control logic for active suppression vibration of the stabilizers. The disturbance analysis and the characterization of the dynamics of the structure had been carried out. On the basis of these results, an inertial actuator had been designed and sized for the considered structure. In order to find the control logic that best fits the requirements of the company, different algorithms are taken into consideration. Among these, the choice has fallen on a Phase-Locked Loop (PLL) based controller opportunely modified. This algorithm is based on the real-time identification and tracking of the main harmonic of the disturbance and commands the control action to the actuator, such that it acts at those specific frequencies only. The numerical simulations and the experimental tests have shown that the algorithm is efficient, robust and able to respond promptly to variations of the disturbance signal in amplitude, frequency and phase. Moreover, the logic can be realized without needing a model of the controlled system or other computationally complex systems. For even better performance, a "sky-hook" control logic is exploited in parallel, in order to increase the damping of the resonance.
Gli elicotteri sono veicoli soggetti a notevoli problemi di vibrazioni che comportano riduzione di comfort e che possono inficiare la vita a fatica di alcuni componenti. L'origine delle vibrazioni risiede per lo più nel rotore principale che trasmette alla fusoliera carichi alternati con frequenze multiple della velocità angolare del rotore stesso. Tra gli elementi maggiormente sollecitati c'è lo stabilizzatore di coda che, a causa della sua struttura in composito, è leggero e caratterizzato da un basso smorzamento. Questa tesi, realizzata in collaborazione tra Politecnico di Milano e la divisione Elicotteri di Leonardo S.p.A, ha lo scopo di progettare una logica di controllo specifica per la soppressione attiva delle vibrazioni dello stabilizzatore. Dopo aver analizzato il disturbo e caratterizzato la dinamica della struttura d'interesse, sono presi in considerazione gli algoritmi di controllo che possano azionare al meglio l'attuatore inerziale precedentemente progettato. Tra questi, la scelta è ricaduta su una logica basata sull'identificazione del disturbo tramite Phase-Locked Loop (PLL) e opportunamente modificata. Questa è in grado, scelto il range di interesse del disturbo nel dominio delle frequenze, di tracciare in tempo reale l'armonica principale del disturbo acquisito e comandare l'azione di controllo all'attuatore, così da agire solo a quelle frequenze specifiche. Le simulazioni numeriche e i test sperimentali hanno mostrato come l'algoritmo sia efficiente, robusto e in grado di rispondere prontamente a variazioni del segnale di disturbo in ampiezza, frequenza e fase. Inoltre, la logica è progettata senza che sia necessario un modello del sistema da controllare o di altri sistemi gravosi dal punto di vista computazionale. Per avere performance ancora migliori, viene sfruttata, in parallelo, una logica "sky-hook", allo scopo di incrementare lo smorzamento della risonanza.
Control logic for active vibration suppression of helicopter stabilizers
BIANCHI, MASSIMILIANO MARIA
2016/2017
Abstract
Helicopters are vehicles subject to significant vibration problems which entail reduced comfort and can affect the fatigue life of some components. The principal cause of vibrations is the main rotor which transmits alternate loads to the fuselage with frequencies multiple of the angular speed of the rotor itself. Among the most stressed elements, there is the horizontal stabilizer which, due to its composite structure, is light and characterized by a low damping. This thesis, realized in collaboration between the Politecnico di Milano and the Helicopters division of Leonardo S.p.A, is intended to design a specific control logic for active suppression vibration of the stabilizers. The disturbance analysis and the characterization of the dynamics of the structure had been carried out. On the basis of these results, an inertial actuator had been designed and sized for the considered structure. In order to find the control logic that best fits the requirements of the company, different algorithms are taken into consideration. Among these, the choice has fallen on a Phase-Locked Loop (PLL) based controller opportunely modified. This algorithm is based on the real-time identification and tracking of the main harmonic of the disturbance and commands the control action to the actuator, such that it acts at those specific frequencies only. The numerical simulations and the experimental tests have shown that the algorithm is efficient, robust and able to respond promptly to variations of the disturbance signal in amplitude, frequency and phase. Moreover, the logic can be realized without needing a model of the controlled system or other computationally complex systems. For even better performance, a "sky-hook" control logic is exploited in parallel, in order to increase the damping of the resonance.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Bianchi.pdf
non accessibile
Descrizione: Tesi
Dimensione
5.76 MB
Formato
Adobe PDF
|
5.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139907