The single stage axial gas turbine, sited at Laboratorio di Fluidodinamica delle Macchine at Politecnico di Milano, is representative of present-day high pressure stages for industrial applications. It has been extensively studied by means of experimental analyses and CFD simulation, however the real geometry of the turbine has never been extensively simulated in an unsteady fashion. The aim of the present thesis work is to use a method recently implemented in ANSYS CFX (called time-inclined method or time transformation) which is capable of handling the real geometry in a transient fashion, including a different pitch between the stator and the rotor domain. This problem was previously circumvented by means of a particular geometrical transformation called homothety. Both steady and unsteady 3D simulations are carried out in order to assess the quality of the two geometrical configurations. The results show that a steady simulation is not representative of the rotor flow field both with the real geometry of the stator and with the transformed one. It is evident that unsteady simulations are needed to better investigate the flow field in the stage. The transient cases using the two different geometries present little but important differences. The two simulations have also different approaches starting from the pre-processing up to the post-processing, as well as a different computational time. As a result there is not an always valid method: it is up to the engineer to choose the method nearer to its needs.
La turbina assiale a singolo stadio, ubicata presso il Laboratorio di Fluidodinamica delle Macchine al Politecnico di Milano, è rappresentativa di uno stadio ad alta pressione per applicazioni industriali. È stata studiata estensivamente sia mediante analisi sperimentali sia mediante simulazioni CFD, tuttavia la geometria reale della turbina non è mai stata ampiamente simulata in instazionario. Lo scopo di questa tesi è di usare un metodo recentemente implementato in ANSYS CFX (chiamato metodo time-inclined o time transformation)capace di simulare la geometria reale in condizioni instazionarie, che prevede un pitch differente tra statore e rotore. Tale problema era stato precedentemente evitato grazie ad una particolare trasformazione geometrica chiamata omotetia. Sia simulazioni stazionarie che instazionarie sono state condotte, in modo tale da indagare la qualità delle due configurazioni geometriche. I risultati mostrano che le simulazioni stazionarie non sono rappresentative del flusso dentro al rotore sia con la reale geometria dello statore sia con quella trasformata. È evidente che sono necessarie delle simulazioni instazionarie per investigare meglio i campi di moto nello stadio. I casi instazionari presentano piccole ma importanti differenze con le due differenti geometrie. Le due simulazioni inoltre hanno anche approcci differenti partendo dal pre-processing fino al post-processing, così come un tempo computazionale diverso. Ne risulta che non esiste un metodo che è sempre valido: spetta all’ingegnere scegliere quello che più si avvicina ai suoi bisogni.
3D unsteady CFD simulations of an axial turbine stage through time-inclined model
SINOPOLI, FRANCESCO
2016/2017
Abstract
The single stage axial gas turbine, sited at Laboratorio di Fluidodinamica delle Macchine at Politecnico di Milano, is representative of present-day high pressure stages for industrial applications. It has been extensively studied by means of experimental analyses and CFD simulation, however the real geometry of the turbine has never been extensively simulated in an unsteady fashion. The aim of the present thesis work is to use a method recently implemented in ANSYS CFX (called time-inclined method or time transformation) which is capable of handling the real geometry in a transient fashion, including a different pitch between the stator and the rotor domain. This problem was previously circumvented by means of a particular geometrical transformation called homothety. Both steady and unsteady 3D simulations are carried out in order to assess the quality of the two geometrical configurations. The results show that a steady simulation is not representative of the rotor flow field both with the real geometry of the stator and with the transformed one. It is evident that unsteady simulations are needed to better investigate the flow field in the stage. The transient cases using the two different geometries present little but important differences. The two simulations have also different approaches starting from the pre-processing up to the post-processing, as well as a different computational time. As a result there is not an always valid method: it is up to the engineer to choose the method nearer to its needs.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Francesco_Sinopoli_d.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
18.71 MB
Formato
Adobe PDF
|
18.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139914