The thesis work deals with the study of the dynamic behaviour of an instrumented vehicle after a kick-plate excitation. The ultimate scope was to provide a simple vehicle model with identified parameters, able to reproduce the real vehicle dynamics for future vehicle-plus-driver stability studies. The work starts from a test campaign carried out previously in a proving ground. Vehicle kinematic quantities were acquired by using an Inertial Navigation System and CAN bus in-vehicle sensors. Forces and moments exerted by the driver were also acquired by means of an innovative ad hoc Instrumented Steering Wheel. Firstly, an accurate post-processing of the experimental data was made. Then, a 2-Degree-Of-Freedom (side-slip and yaw) single-track model was implemented. An identification method based on root-mean-square errors minimization between numerical and experimental response was coded. The optimization problem was solved by an exhaustive search approach. Initially, effective cornering stiffnesses were identified for a U turn on dry asphalt. Then, complete nonlinear effective axle characteristics were identified for a countersteering manoeuvre on wet surface after a kick-plate excitation. Nonlinear effective axle characteristics were modelled by means of Magic Formulae. The vehicle model with identified parameters was finally validated for both manoeuvres. Results show a very good numerical-vs-experimental correlation for the identified linearised characteristics and a fair correlation for the nonlinear ones.
L’obiettivo di questa tesi è quello di realizzare uno studio sul comportamento dinamico di un autoveicolo strumentato dopo l’eccitazione da parte di un ‘kick-plate’. Lo scopo finale è l’implementazione di un semplice modello di veicolo, con parametri identificati, in grado di riprodurre fedelmente la dinamica della vettura reale, da utilizzare in studi successivi relativi alla stabilità del sistema completo veicolo-più-pilota. Il lavoro parte da una campagna di test eseguita precedentemente in circuito. Le principali grandezze cinematiche del veicolo sono state acquisite tramite un Sistema di Navigazione Inerziale e i sensori della vettura, acquisiti tramite la rete CAN. In più, le forze e i momenti esercitati dal pilota sono stati acquisiti tramite un volante strumentato. In primo luogo, i dati sperimentali sono stati processati. Poi, si è implementato un modello di veicolo monotraccia a due gradi di libertà (angolo di assetto e imbardata). Inoltre, una metodologia d’identificazione dei parametri del modello, basata sulla minimizzazione degli errori quadratici medi tra le risposte numerica e sperimentale, è stata implementata. Il problema di ottimizzazione è stato risolto tramite un algoritmo di ricerca esaustiva. In primis, le rigidezze di deriva sono state identificate per una manovra di inversione di 180 gradi su asfalto asciutto. Poi, l’identificazione delle caratteristiche effettive non lineari degli assali è stata compiuta per una manovra di controsterzo dopo l’impulso del ‘kick-plate’, su una superficie bagnata a bassa aderenza. Le caratteristiche effettive non lineari degli assali sono state modellate tramite le Magic Formulae. I risultati mostrano un’ottima correlazione numerico-sperimentale per le rigidezze di deriva identificate ed una buona correlazione per le caratteristiche complete non lineari.
Numerical and experimental study of the dynamic behaviour of a vehicle after a kick-plate excitation
LOMAS BENITO, JAVIER
2017/2018
Abstract
The thesis work deals with the study of the dynamic behaviour of an instrumented vehicle after a kick-plate excitation. The ultimate scope was to provide a simple vehicle model with identified parameters, able to reproduce the real vehicle dynamics for future vehicle-plus-driver stability studies. The work starts from a test campaign carried out previously in a proving ground. Vehicle kinematic quantities were acquired by using an Inertial Navigation System and CAN bus in-vehicle sensors. Forces and moments exerted by the driver were also acquired by means of an innovative ad hoc Instrumented Steering Wheel. Firstly, an accurate post-processing of the experimental data was made. Then, a 2-Degree-Of-Freedom (side-slip and yaw) single-track model was implemented. An identification method based on root-mean-square errors minimization between numerical and experimental response was coded. The optimization problem was solved by an exhaustive search approach. Initially, effective cornering stiffnesses were identified for a U turn on dry asphalt. Then, complete nonlinear effective axle characteristics were identified for a countersteering manoeuvre on wet surface after a kick-plate excitation. Nonlinear effective axle characteristics were modelled by means of Magic Formulae. The vehicle model with identified parameters was finally validated for both manoeuvres. Results show a very good numerical-vs-experimental correlation for the identified linearised characteristics and a fair correlation for the nonlinear ones.| File | Dimensione | Formato | |
|---|---|---|---|
|
2018_04_Lomas.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
10.86 MB
Formato
Adobe PDF
|
10.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139955