The explosive growth of Silicon Photonics, driven by data centers and current trends of cloud applications, is demanding the development of photonic integrated circuits with unprecedented complex architectures. The European project ICT-STREAMS (Silicon Photonics Transceiver and Routing) aims to realize a router in Silicon Photonic technology for high bandwidth chip-to-chip optical communications. The issue of detecting light power variations in Silicon waveguides, which has impaired so far the progress of the technology, is overcome by employing the non-invasive CLIPP sensor. Most optical devices exhibit high thermal sensitivity that undermines the stability of their working point in the harsh environment of real-life data centers. This problem is managed in STREAMS with a reliable real-time Thermal Drift Compensation System, implemented through multiple nested control loops. In the present Master Thesis, a complete system to set the working point of four independent Silicon Microring Modulators has been integrated in a single ASIC design. The information of the light power derivative, necessary to operate a reliable stabilization, has been obtained by employing the dithering technique. The challenges posed by the extraction of a small signal, buried in ripples 300.000 times higher than its value, have been overcome with the implementation of a complex switched-capacitors filtering system. A 7-channels version of the ASIC, including only the acquisition circuits for the CLIPP, has also been designed and completed with the layout realization. The layout had to deal with the advanced features offered by the 0.180 um BCD8sP technology from ST-Microelectronics, terminating with successful post-layout simulations and delivering to the Foundry.
Il grande sviluppo delle tecnologie in Silicon Photonics, guidato dalla crescita dei data center e dalle attuali tendenze delle applicazioni cloud, richiede lo sviluppo di circuiti fotonici integrati con architetture complesse senza precedenti. Il progetto Europeo ICT-STREAMS punta a realizzare un router in tecnologia Silicon Photonics per comunicazioni ottiche chip-to-chip a larga banda. La difficoltà nel rilevare le variazioni di potenza ottica in guide di Silicio, che ha frenato finora lo sviluppo di questa tecnologia, è stata superata attraverso l'utilizzo del sensore non invasivo CLIPP. La maggior parte dei dispositivi ottici presenta elevata sensibilità alle variazioni termiche, compromettendo la stabilità delle loro condizioni di lavoro negli ambienti ostili degli odierni datacenter. Il problema è risolto nel progetto STREAMS attraverso un affidabile sistema di compensazione in tempo reale delle variazioni termiche, implementato attraverso multipli loop di controllo annidati. Durante l'attuale lavoro di tesi è stato realizzato un ASIC contenente un sistema di controllo completo per la stabilizzazione delle condizioni di lavoro di quattro modulatori ottici in Silicio. La derivata della potenza ottica, necessaria per un controllo affidabile del sistema, è stata ottenuta attraverso l'utilizzo della tecnica del dithering. Le sfide poste dall'estrazione di un piccolo segnale, sommerso in oscillazioni 300.000 volte più grandi, sono state superate con la realizzazione di un complesso sistema di filtraggio a capacità commutate. Una versione a 7 canali dell'ASIC, contenente solo il sistema di acquisizione per le CLIPP, è stata inoltre progettata e completata con la realizzazione del layout. Quest'ultimo ha dovuto tener conto delle caratteristiche avanzate offerte dalla tecnologia BCD8sP a 180 nm di ST-Microelectronics, concludendosi con successo con le simulazioni post layout e la consegna alla fabbrica.
Integrated circuit for thermal drift compensation system in silicon photonics
CARUSO, FRANCESCO
2016/2017
Abstract
The explosive growth of Silicon Photonics, driven by data centers and current trends of cloud applications, is demanding the development of photonic integrated circuits with unprecedented complex architectures. The European project ICT-STREAMS (Silicon Photonics Transceiver and Routing) aims to realize a router in Silicon Photonic technology for high bandwidth chip-to-chip optical communications. The issue of detecting light power variations in Silicon waveguides, which has impaired so far the progress of the technology, is overcome by employing the non-invasive CLIPP sensor. Most optical devices exhibit high thermal sensitivity that undermines the stability of their working point in the harsh environment of real-life data centers. This problem is managed in STREAMS with a reliable real-time Thermal Drift Compensation System, implemented through multiple nested control loops. In the present Master Thesis, a complete system to set the working point of four independent Silicon Microring Modulators has been integrated in a single ASIC design. The information of the light power derivative, necessary to operate a reliable stabilization, has been obtained by employing the dithering technique. The challenges posed by the extraction of a small signal, buried in ripples 300.000 times higher than its value, have been overcome with the implementation of a complex switched-capacitors filtering system. A 7-channels version of the ASIC, including only the acquisition circuits for the CLIPP, has also been designed and completed with the layout realization. The layout had to deal with the advanced features offered by the 0.180 um BCD8sP technology from ST-Microelectronics, terminating with successful post-layout simulations and delivering to the Foundry.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Francesco_Caruso.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
74.96 MB
Formato
Adobe PDF
|
74.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140047