This internship was conducted in Paris at the IRC (Institut de Recherche en Contructibilité), the research center of the engineering school ESTP (namely Ecole Spéciale des Travaux Publics). The topic of the thesis is the study of the curing kinetics in cold mix asphalts (CMA), an important subject due to the growing global interest in environmental issues and the general need for economic savings. The achievement of the final mechanical performances in these compounds is obtained through the development of the curing process and the evaporation of the internal water. Despite the several studies conducted on the topic, the drafting of a universally recognized procedure has not yet been completed. The experimental analysis consists in the characterisation of the raw materials (bitumen, aggregates and RAP), the formulation and characterisation of three bitumen emulsions with two types of emulsifiers (A and B) with different chemical nature. Six CMA mixtures are fabricated, mixing emulsions with water, aggregates, fillers and RAP. In all the compounds, the optimisation of water and binder content is performed at small scale through visual evaluations of water aspect, consistency and percentage of covering of the aggregates. The intermediate-scale fabrication leads to the validation of the optimised formulas through the workability tests and the Gyratory Shear Press. The curing kinetics is analysed by the application of specific conditions (30° C, 20% of relative humidity, 14 days), assessing the effect of this treatment through the evaluation of the water resistance and rutting resistance. The results showed the compliance with the standard in all the formulated emulsions (highlighting better properties with the use of the emulsifier B), a common kinetics in the water evaporation for all the manufactured mixtures, and the fulfillment of the requirements in all the intermediate-scale tests, except for the rutting resistance which is weak in the examined cases.
Questo tirocinio è stato svolto a Parigi, in collaborazione con il centro di ricerca IRC presso la scuola di ingegneria ESTP (Ecole Spéciale des Travaux Publics). L’argomento è lo studio del fenomeno di curing in miscele di conglomerato bituminoso a freddo, rilevante per il crescente interesse globale alle tematiche ambientali e per la possibilità di risparmio. Il raggiungimento delle prestazioni meccaniche finali in tali composti richiede il completo sviluppo del processo di curing ma, nonostante i numerosi studi condotti sul tema, non è stata ancora ultimata la redazione di una procedura riconosciuta per la simulazione accelerata del fenomeno. L’analisi sperimentale inizia con la caratterizzazione dei materiali (bitume, aggregati e RAP), e nella formulazione e caratterizzazione di tre emulsioni di bitume con due tipologie di emulsificanti di diversa natura chimica (A e B). Sono fabbricate sei miscele di conglomerato bituminoso, unendo le emulsioni con acqua, aggregati, filler e RAP. In tutti i composti l’ottimizzazione del contenuto d’acqua e di legante viene effettuata in piccola scala con valutazioni visive su aspetto idrico, consistenza e ricoprimento degli aggregati. La fabbricazione a scala intermedia permette la validazione delle formule ottimizzate tramite prove di lavorabilità e Pressa a Taglio Giratoria. Lo studio della cinetica di curing viene studiato applicando definite condizioni (30°C, 20% di umidità relativa, 14 giorni), valutando l’effetto del trattamento con prove di resistenza all’acqua e all’ormaiamento. I risultati hanno mostrato il rispetto delle normative nella totalità delle emulsioni formulate (evidenziando proprietà migliori con l’uso dell’emulsificante B), la cinetica comune nell’evaporazione dell’acqua per tutte le miscele fabbricate, e il soddisfacimento dei requisiti normativi in tutte le prove a scala intermedia, ad eccezione della resistenza all’ormaiamento che risulta debole nei casi esaminati.
Study of the curing kinetics of new and recycled cold mix asphalt
PIERGALLINI, BIANCA
2017/2018
Abstract
This internship was conducted in Paris at the IRC (Institut de Recherche en Contructibilité), the research center of the engineering school ESTP (namely Ecole Spéciale des Travaux Publics). The topic of the thesis is the study of the curing kinetics in cold mix asphalts (CMA), an important subject due to the growing global interest in environmental issues and the general need for economic savings. The achievement of the final mechanical performances in these compounds is obtained through the development of the curing process and the evaporation of the internal water. Despite the several studies conducted on the topic, the drafting of a universally recognized procedure has not yet been completed. The experimental analysis consists in the characterisation of the raw materials (bitumen, aggregates and RAP), the formulation and characterisation of three bitumen emulsions with two types of emulsifiers (A and B) with different chemical nature. Six CMA mixtures are fabricated, mixing emulsions with water, aggregates, fillers and RAP. In all the compounds, the optimisation of water and binder content is performed at small scale through visual evaluations of water aspect, consistency and percentage of covering of the aggregates. The intermediate-scale fabrication leads to the validation of the optimised formulas through the workability tests and the Gyratory Shear Press. The curing kinetics is analysed by the application of specific conditions (30° C, 20% of relative humidity, 14 days), assessing the effect of this treatment through the evaluation of the water resistance and rutting resistance. The results showed the compliance with the standard in all the formulated emulsions (highlighting better properties with the use of the emulsifier B), a common kinetics in the water evaporation for all the manufactured mixtures, and the fulfillment of the requirements in all the intermediate-scale tests, except for the rutting resistance which is weak in the examined cases.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Piergallini.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.57 MB
Formato
Adobe PDF
|
5.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140170