Abstract Infants born before 37th week of gestational age are defined preterm. Prematurity represents one of the major challenges in the neonatal field. The increased survival rate at birth has led to dramatic rise in its occurrence and of the complications relative to it. For example, in 2007 the number of preterm delivery has been registered as around 12.7% in the United States, reporting an increment of approximately 20% with respect to the two precedent decades. In particular, for what concerns the respiratory system, as underlined by the World Health Organization, preterm delivery represents a traumatic event, able to influence lungs’ subsequent growth and functionality, deeply affecting the quality of life of the newborn. Since the respiratory system has not reached a sufficient stage of maturation, it is often necessary to help the newborn with ventilatory supports from birth. Although such treatments, often joined with proper pharmacological therapies, are essential in guaranteeing the survival of the patient, they may lead to a series of side effects and cause relevant impairments to immature, surfactant-deficient lungs. Surfactant is indeed a fundamental component in the definition of the mechanical and functional properties of the healthy lung, and its shortage could be one of the factors that facilitate the insurgence of disturbances of the tracheobronchial tree. These are often correlated to alterations in the morphological structure of the airways and frequently translate in chronic limitations of the respiratory functionality. One of the principal chronic pathologies belonging to this category is the Bronchopulmonary dysplasia which, despite all the new innovations introduced in the clinical field, presents rates of incidence unchanged throughout several years. The consequences of this disease include the growth of simplified and larger alveolar structures with a decreased level of alveolarisation, increased interstitial fibrosis and abnormal pulmonary vasculature. Furthermore, at the lower airway level, this disease causes a sharp increase in the airways resistance as well as a decrease of their compliance, leading to a reduced tidal volume and an increased respiratory rate. These modifications are often accompanied by infection and inflammatory phenomena, which may lead to airway smooth muscle hypertrophy. The thickening of the muscular tissue is also correlated to a high exposition to large quantity of oxygen in the first days of life, which is necessary to guarantee a correct oxygenation. Another consequence of the preterm birth is the bronchial hyperresponsiveness, a condition characterized by an excessive airway narrowing in response to a variety of stimuli that do not cause any response in healthy subjects. It is a consequence of an ongoing and irreversible process of morpho-structural remodeling of the airway wall tissue. The bronchial hyperresponsiveness is widely studied as it is one of the most dangerous features of asthma, a chronic disease characterized by an interplay between airflow obstruction, hyperresponsiveness and airways inflammation. The exact structural changes and pathophysiological mechanisms of increased respiratory illness following preterm birth remains not fully understood. Albertine et al. demonstrated that preterm lambs mechanically ventilated from birth for 21 days had thickened smooth muscle area around terminal bronchioles compared to term newborn lambs4. However, how these morphological changes and functional impairment evolve with growth is still unknown. The aim of this thesis is to provide new investigational tools for improving our understanding on how prematurity impacts the relationship between structure and function in the newborn’s airways. This is a pilot study with the purpose of implementing an experimental set-up, measurement protocols and data processing algorithms for allowing the ex-vivo investigation of airways mechanics and airway smooth muscle contractility as well as the effect of bronchoconstrictor drugs. Our thesis is organized in five chapters: Chapter 1 presents the physiology of the neonatal respiratory system, giving particular relevance to the lung development stages during fetal life, to airways anatomy and structure and to the physiology, mechanics and regulation of developing airways. The neonatal respiratory pathophysiology is also described by illustrating definition and epidemiology of prematurity, as well as its etiology, respiratory pathophysiology and respiratory supports benefits and side effects. Respiratory disorders in preterm infants are presented with a particular focus on bronchopulmonary dysplasia, bronchial hyperresponsiveness and asthma, as well as their long-term impact on the respiratory system. In Chapter 2 the state of art is exhibited according to a classification between in vivo and ex vivo studies. Among the first category the clinical results related to spirometry, forced oscillation technique and endoscopy, whereas in the second one morphometry, endoscopy, ultrasounds and anatomical optical coherence tomography have been illustrated as techniques able to effectively study ex vivo samples. For each of these two areas the methodologies, outcomes and limits have been evaluated, as well as their peculiarities and effectiveness in evaluating different respiratory aspects associated to the pathophysiological status of the airways. Furthermore, the purpose and the choice of the appropriate animal model to be used for our study is discussed. Finally, the aims of this thesis are presented. Chapter 3 focuses on the system we have designed and developed. The chapter starts with an illustration of its general requirements, followed by the detailed description of every component. In particular, these consist in the bioreactor, the main electronic unit with its relative firmware and software, the ultrasound system and the algorithms dedicated to the data processing. The bioreactor is composed by the tissue bath and the reservoir; it is dedicated to the housing of the samples and it keeps them alive and provided with proper nourishment. In this section other tissue management devices are also presented: the tissue preparation unit, which is used to maintain the samples during the preparation phase, and the optical microscope utilized to obtain histological images both before and after the tests. The main electronic platform is dedicated to the signal detection and control. Its main blocks are the power supply unit, analog and digital sensors, actuators and the microcontroller. In particular the system employs one digital temperature and one analogic pressure sensor, whereas two pumps and three thermo-resistances as actuators. The firmware is described beginning with an introduction related to the pressure control modes, which presents the open loop and closed loop strategies; then the firmware architecture is illustrated, with a particular focus on the finite state machine developed, followed by a description of the user interface software. The ultrasound system is presented with a brief introduction related to the ultrasound physics in which the main focus is related to the acoustic waves, acoustic impedance and attenuation. After this, the ultrasound system used in this study is described. The last section of this chapter is dedicated to the data processing, which features the image processing and the overall signal processing algorithms. In the first section it is described the theory behind the Snake algorithm, which is the algorithm chosen for the measurement of the cross-section of the biological samples. In the second section the computation algorithms for the estimation of the real and imaginary part of the impedance between the pressure inside the airway and its dimensional characteristics are presented. The results are presented in Chapter 4, which is organized in two main sections, the in vitro validation and the ex vivo measurements. In the first part several evaluations performed on our set-up in order to test its proper functionality are presented. In particular we tested the temperature control, the synchronization unit, the quality of the pressure control, the quality of the ultrasonic images and the capabilities of the signal processing algorithm. In the second section there is a complete description of the results achieved, measuring airway mechanical behavior before and after bronchoconstriction. The first ex-vivo set of tests demonstrated the possibility to adequately characterize airways mechanical properties. In particular, we used three different stimulation frequencies to probe the samples (0.5 Hz, 0.250 Hz and 0.125 Hz). The highest frequency did not provide good results, mostly because of low signal-to-noise ratio on the imaging signals, suggesting the necessity of higher amplitude pressure stimuli which, however, might induce non-linear response. However, as this frequency is far from the physiological rhythm of the spontaneous breath, this issue simply suggests focusing the study on lower frequencies. In addition, the initial analysis of the airways mechanical properties performed through the impedance estimation, before the pharmacological stimulus, presented an inversely proportional relation between the dimensional measurement and the absolute value of both the real and imaginary part. This behavior is increased with decreasing stimulation frequencies. We also performed bronchoconstriction tests using methacholine and acetylcholine to study the airway response to non-specific constriction stimuli. These tests highlighted that the bronchoconstrictor drug causes modifications in the mechanical properties of the samples, and its effect is higher at lower frequencies. In conclusion, we developed and validated an experimental set up and test protocols for assessing airway mechanics and hyperreactivity in ex-vivo samples. The in vitro validation provided good results for the quantitative assessment of the AWs geometry. The design of a closed loop control algorithm for pressure control allowed reaching an optimal quality of the pressure waveform, with an average distortion from an ideal sinusoidal waveform lower than 10%. Regarding the ultrasound image quality, after appropriate tuning of the ultrasound scanner parameters, the validation study performed showed that geometrical distortions are lower than 1%. Moreover, the samples responded well to drug stimulation for the whole duration of the tests, allowing us to state that the bioreactor is fully able to keep specimens alive furnishing their cells with the correct nourishment. The ex-vivo investigations performed yielded satisfactory results on the reproducibility of the dimensional measurements and on impedance values. Baseline measurement of mechanical properties of the airways showed a dependence of airway wall impedance on internal area. This dependence is increased at low stimulation frequencies. Test with bronchoconstrictors showed results coherent with the different characteristic of the airways studied. Therefore, our device and protocols were able to provide reliable measurements, sensitive to changes induced by bronchoconstriction. The technology we developed can be used in future studies to characterize airways mechanics of lambs with various respiratory developmental stages and subjected to different respiratory treatments after birth, such as different mechanical ventilation periods (three days to 21 days) or techniques (i.e. invasive or not invasive). Hence, the investigation of how the ventilation strategies and supports at birth do influence the factors we examined could be deepened, and, therefore, this knowledge might help in designing improved clinical protocols aimed to reduce both incidence and severity of long term respiratory outcomes of prematurity.
Sommario I neonati nati prima della trentasettesima settimana di età gestazionale sono definiti pretermine; la prematurità rappresenta una delle maggiori sfide nel campo neonatale. L’aumentato tasso di sopravvivenza alla nascita ha comportato un drammatico aumento della sua incidenza e delle complicazioni ad essa correlate. Per esempio, nei soli Stati Uniti nel 2007 è stata registrata una percentuale di nascite pretermine pari al 12,7 % segnando un incremento rispetto ai due decenni precedenti vicino al 20%. In particolare, per ciò che concerne il sistema respiratorio, come evidenziato dall’ Organizzazione Mondiale della Sanità (OMS), la nascita pretermine rappresenta un evento traumatico capace di influenzare la successiva crescita e funzionalità dei polmoni gravando pesantemente sulla qualità della vita futura del bambino. Il sistema respiratorio pretermine non raggiunge un sufficiente grado di maturità ed è dunque necessario sottoporre il bambino a ventilazione meccanica fin dalla nascita. Tali trattamenti, spesso uniti ad opportune terapie farmacologiche, sebbene siano essenziali per garantire la sopravvivenza, possono comportare una serie di effetti collaterali e causare danni importanti a polmoni particolarmente vulnerabili a stress di natura meccanica in quanto immaturi e connotati da una presenza di surfattante deficitaria per quantità e composizione. Il surfattante è infatti un componente fondamentale nella definizione delle proprietà meccaniche e funzionali del polmone sano e la sua carenza può essere uno dei fattori che favoriscono l’insorgenza di disturbi dell’albero tracheobronchiale. Questi ultimi sono spesso correlati ad alterazioni morfologiche delle vie aeree che si traducono in limitazioni croniche della funzionalità respiratoria. Una delle principali patologie croniche è la displasia broncopolmonare, la cui incidenza nonostante le innovazioni introdotte in ambito clinico presenta tassi invariati da diversi anni. Essa determina la formazione di strutture alveolari grossolane e associate ad un insufficiente grado di ramificazione, può innescare fenomeni di fibrosi interstiziale ed influenza negativamente lo sviluppo della vascolarizzazione polmonare. Inoltre, a livello delle vie aeree inferiori la displasia broncopolmonare determina un netto aumento della resistenza al flusso d’aria e un loro marcato irrigidimento associati a una riduzione del volume corrente e ad un aumento della frequenza respiratoria. Tali modificazioni sono spesso accompagnate da infezioni e fenomeni infiammatori capaci di indurre processi d’ipertrofia della muscolatura liscia delle vie aeree. L’ispessimento del tessuto muscolare è anche favorito dall’esposizione ad alte concentrazioni di ossigeno necessarie nei primi giorni di vita per garantire una corretta ossigenazione. Un’altra conseguenza della nascita pretermine è rappresentata dall’insorgenza dell’iperreattività bronchiale. Questo disturbo provoca un eccessivo restringimento delle vie aeree in risposta a molteplici stimoli. Essa è conseguenza di complesse modificazioni morfostrutturali associate a un processo irreversibile di remodeling del tessuto delle vie aeree. L’iperreattività è poi largamente studiata in quanto rappresenta una delle caratteristiche peculiari dell’asma, una malattia cronica caratterizzata dall’interazione tra processi ostruttivi ed infiammatori delle vie aeree uniti ad un insorgere del fenomeno di iperresponsività. Gli esatti cambiamenti strutturali e i meccanismi patofisiologici che determinano un’aumentata morbidità respiratoria a seguito della nascita pretermine rimangono non pienamente compresi. Albertine et al. hanno dimostrato che agnelli meccanicamente ventilati per 21 giorni dopo la nascita presentano un ispessimento del tessuto muscolare liscio presente attorno ai bronchioli terminali rispetto agli agnelli a termine. Tuttavia, la modalità attraverso cui queste modificazioni morfologiche e limitazioni funzionali evolvono con la crescita è tuttora oggetto d’indagine. L’obiettivo ultimo di questa tesi è il fornire nuovi strumenti investigativi per migliorare la comprensione di come la prematurità impatti la relazione tra struttura e funzione nelle vie aeree di neonati. Questo rappresenta uno studio pilota con lo scopo di implementare un set-up sperimentale, protocolli di misura e algoritmi di data processing per permettere investigazioni ex-vivo della meccanica delle vie aeree e della contrattilità della muscolatura liscia, così come l’effetto di farmaci broncocostrittori. Nel Capitolo 1 è presentata la fisiologia del sistema respiratorio neonatale, ponendo particolare attenzione alle fasi di sviluppo polmonare a partire dalla vita fetale, all’anatomia e struttura delle vie aeree e alle loro proprietà meccaniche e funzionali. La patofisiologia respiratoria neonatale è poi illustrata partendo dalla definizione della condizione pretermine di cui sono descritte la definizione, l’epidemiologia, i principali fattori eziologici e gli effetti sulla funzionalità respiratoria tenendo conto degli eventuali disturbi e danni collaterali della ventilazione meccanica. Infine, sono introdotti i disturbi respiratori nei neonati pretermine, focalizzandosi sulla displasia broncopolmonare, sull’iperreattività bronchiale, sull’asma e sul loro impatto rispetto al sistema respiratorio. Nel Capitolo 2 lo stato dell’arte è stato descritto secondo una classificazione che ci ha permesso di distinguere tra studi in vivo ed ex-vivo. Tra i primi sono stati investigati i risultati ottenuti in ambito clinico impiegando la spirometria, la tecnica delle oscillazioni forzate e l’endoscopia. Alla seconda categoria appartengono invece studi effettuati ricorrendo a morfometria, endoscopia, ultrasonografia e alla OCT anatomica. Per ognuna di queste metodologie e tecnologie sono stati descritti le potenzialità ed i limiti, mostrandone le peculiarità e l’efficacia nel valutare diversi aspetti legati allo stato fisiopatologico delle vie aeree. Inoltre, viene presentata una panoramica relativa all’impiego e alla scelta del modello animale adeguato al nostro studio. In ultimo sono discussi i principali obiettivi del nostro lavoro di ricerca. Il Capitolo 3 è focalizzato sul sistema da noi progettato ed implementato. In particolare, dopo una breve illustrazione dei requisiti generali del set-up, viene presentata una dettagliata descrizione di ogni parte di cui esso è costituito. Quest’ultime comprendono il bioreattore, la piattaforma elettronica principale con il relativo firmware e software da noi sviluppati, il sistema ad ultrasuoni e l’algoritmo dedicato all’elaborazione dei dati. Nello specifico il bioreattore è composto da una bagna e da una riserva, svolge le funzioni di alloggiamento e mantenimento in vita dei campioni biologici fornendo il necessario nutrimento. In questa sezione sono presentati altri dispositivi impiegati per la gestione dei tessuti: l’unità di preparazione dei campioni è usata per mantenere le vie aeree durante la fase di preparazione, mentre il microscopio è utilizzato per ottenere immagini istologiche prima e dopo i test. La piattaforma elettronica principale è rappresentata dall’hardware dedicato alla detezione e controllo dei segnali. Tra i suoi blocchi primari vengono descritti l’unità di alimentazione, i sensori analogici e digitali, gli attuatori e la board microcontrollata. In particolare, il sistema impiega come attuatori un termometro digitale, un trasduttore di pressione analogico, due pompe centrifughe e tre termoresistenze. Il firmware è presentato partendo da un’introduzione relativa alle modalità di controllo della pressione in anello aperto ed in anello chiuso, seguita dalla descrizione della sua architettura espressa in termini di una macchina a stati finiti. Infine, sono illustrati i dettagli relativi al software dell’interfaccia utente. La descrizione del sistema ecografico è accompagnata da un’introduzione relativa alla fisica degli ultrasuoni nella quale si è dato risalto all’impedenza ed onde acustiche ed ai fenomeni di attenuazione. Dopo questa parte sono poi riportate sia le caratteristiche generali sia le specifiche funzionalità del sistema ad ultrasuoni da noi utilizzato nel corso di questo studio. L’ultimo paragrafo di questo capitolo è dedicato al processing dei dati e contiene la descrizione degli algoritmi di elaborazione di immagini e segnali. Nella prima sezione è illustrata la teoria relativa all’algoritmo Snake, da noi adattato per effettuare la stima della sezione trasversale interna delle vie aeree mentre nella seconda parte viene spiegato il metodo usato per calcolare le parti reale ed immaginaria dell’impedenza stimata correlando la stimolazione pressoria alla corrispettiva misura dimensionale. I risultati sono presentati nel capitolo 4 che è organizzato in due sezioni principali relative alla validazione in vitro e alle misurazioni ex vivo. Nella prima parte sono riportati i dati relativi a diversi test eseguiti sul nostro set-up al fine di valutarne la corretta funzionalità. In particolare, abbiamo testato il controllo della temperatura, l'unità di sincronizzazione, la qualità del controllo della pressione, la qualità delle immagini ultrasoniche e le performances dell'algoritmo di elaborazione del segnale. Nella seconda sezione è invece presente una descrizione completa dei risultati raggiunti, misurando il calibro delle vie aeree prima e dopo la broncocostrizione. La prima serie di test ex-vivo da noi eseguita ha dimostrato la possibilità di caratterizzare adeguatamente le proprietà meccaniche delle vie aeree. In particolare, abbiamo utilizzato tre diverse frequenze di stimolazione (0,5 Hz, 0,250 Hz e 0,125 Hz) per sondare il comportamento e la risposta contrattile dei campioni. La frequenza più alta non ha fornito buoni risultati, principalmente a causa del basso rapporto segnale/rumore correlato alla stima dimensionale effettuata in fase di imaging. Tale evidenza suggerisce di impiegare stimoli pressori di ampiezza più elevata che tuttavia potrebbero indurre una risposta non lineare. Inoltre, l'analisi iniziale delle proprietà meccaniche dei campioni, eseguita in assenza di un qualsiasi stimolo farmacologico, ha mostrato l’esistenza di una relazione inversamente proporzionale tra la misura del calibro delle vie aeree e il valore assoluto sia della parte reale che di quella immaginaria relative all’impedenza stimata. Tale comportamento risulta poi ancor più marcato man mano che le frequenze di stimolazione diminuiscono. I test provocativi da noi effettuati hanno comportato l’utilizzo di farmaci quali metacolina o acetilcolina capaci di sottoporre le vie aeree a stimoli di costrizione non specifici. Questi test hanno evidenziato che il farmaco broncocostrittore induce modifiche nelle proprietà meccaniche dei campioni con un effetto tanto più elevato quanto più è il contenuto spettrale della stimolazione meccanica assume frequenze basse. In sintesi, possiamo affermare di aver sviluppato e validato un set up sperimentale ed un protocollo di test per valutare la meccanica delle vie aeree e l'iperreattività in campioni ex-vivo. La validazione in vitro ha fornito buoni risultati per ciò che concerne la valutazione quantitativa delle caratteristiche dimensionali delle vie aeree. Il design di un algoritmo di controllo ad anello chiuso per il controllo della pressione ha poi permesso di raggiungere una qualità ottimale della forma d'onda di pressione, con una distorsione media da una forma d'onda sinusoidale ideale inferiore al 10%. Per quanto riguarda la qualità delle immagini a ultrasuoni, lo studio di validazione condotto dopo un'adeguata regolazione dei parametri dell’ecografo, ha mostrato che le distorsioni introdotte sulla misura del calibro interno dei campioni sono inferiori all'1%. Inoltre, la risposta delle vie aeree alla stimolazione farmacologica si è protratta per l'intera durata dei test, dato da cui si evince che il bioreattore è pienamente in grado di mantenere in vita i campioni fornendo loro il corretto nutrimento. Inoltre, le indagini condotte ex-vivo hanno prodotto risultati soddisfacenti in termini di riproducibilità delle misure dimensionali e delle stime di impedenza. I risultati dei test di baseline hanno evidenziato una dipendenza dei valori d’impedenza della parete delle vie aeree dalla superfice della loro sezione trasversale. Questa dipendenza è aumentata a basse frequenze di stimolazione. I test farmacologici hanno mostrato risultati coerenti con le diverse caratteristiche delle vie aeree studiate. Pertanto, il nostro dispositivo e i nostri protocolli sono stati in grado di fornire misure affidabili e sensibili ai cambiamenti indotti dalla broncocostrizione. La tecnologia che abbiamo sviluppato può dunque essere utilizzata in studi futuri per caratterizzare la meccanica delle vie respiratorie degli agnelli, i quali possono altresì presentare differenti livelli di sviluppo respiratorio ed esser sottoposti a molteplici trattamenti terapeutici dopo la nascita, come periodi di ventilazione meccanica (da tre giorni a 21 giorni) o interventi di varia tipologia (ad esempio invasivi o non invasivi). In ultima analisi, tale tecnologia permette di indagare come le diverse strategie di ventilazione e i necessari trattamenti di supporto alla vita influenzino i fattori che abbiamo esaminato, fornendo una conoscenza che potrebbe aiutare nello sviluppo di protocolli clinici migliorati e volti a ridurre sia l'incidenza che la gravità delle complicazioni respiratorie a lungo termine della prematurità.
Assessment of airway smooth muscle contractility and mechanics in a model of prematurity
GARINI, MATTEO;CROCI, MARCO
2016/2017
Abstract
Abstract Infants born before 37th week of gestational age are defined preterm. Prematurity represents one of the major challenges in the neonatal field. The increased survival rate at birth has led to dramatic rise in its occurrence and of the complications relative to it. For example, in 2007 the number of preterm delivery has been registered as around 12.7% in the United States, reporting an increment of approximately 20% with respect to the two precedent decades. In particular, for what concerns the respiratory system, as underlined by the World Health Organization, preterm delivery represents a traumatic event, able to influence lungs’ subsequent growth and functionality, deeply affecting the quality of life of the newborn. Since the respiratory system has not reached a sufficient stage of maturation, it is often necessary to help the newborn with ventilatory supports from birth. Although such treatments, often joined with proper pharmacological therapies, are essential in guaranteeing the survival of the patient, they may lead to a series of side effects and cause relevant impairments to immature, surfactant-deficient lungs. Surfactant is indeed a fundamental component in the definition of the mechanical and functional properties of the healthy lung, and its shortage could be one of the factors that facilitate the insurgence of disturbances of the tracheobronchial tree. These are often correlated to alterations in the morphological structure of the airways and frequently translate in chronic limitations of the respiratory functionality. One of the principal chronic pathologies belonging to this category is the Bronchopulmonary dysplasia which, despite all the new innovations introduced in the clinical field, presents rates of incidence unchanged throughout several years. The consequences of this disease include the growth of simplified and larger alveolar structures with a decreased level of alveolarisation, increased interstitial fibrosis and abnormal pulmonary vasculature. Furthermore, at the lower airway level, this disease causes a sharp increase in the airways resistance as well as a decrease of their compliance, leading to a reduced tidal volume and an increased respiratory rate. These modifications are often accompanied by infection and inflammatory phenomena, which may lead to airway smooth muscle hypertrophy. The thickening of the muscular tissue is also correlated to a high exposition to large quantity of oxygen in the first days of life, which is necessary to guarantee a correct oxygenation. Another consequence of the preterm birth is the bronchial hyperresponsiveness, a condition characterized by an excessive airway narrowing in response to a variety of stimuli that do not cause any response in healthy subjects. It is a consequence of an ongoing and irreversible process of morpho-structural remodeling of the airway wall tissue. The bronchial hyperresponsiveness is widely studied as it is one of the most dangerous features of asthma, a chronic disease characterized by an interplay between airflow obstruction, hyperresponsiveness and airways inflammation. The exact structural changes and pathophysiological mechanisms of increased respiratory illness following preterm birth remains not fully understood. Albertine et al. demonstrated that preterm lambs mechanically ventilated from birth for 21 days had thickened smooth muscle area around terminal bronchioles compared to term newborn lambs4. However, how these morphological changes and functional impairment evolve with growth is still unknown. The aim of this thesis is to provide new investigational tools for improving our understanding on how prematurity impacts the relationship between structure and function in the newborn’s airways. This is a pilot study with the purpose of implementing an experimental set-up, measurement protocols and data processing algorithms for allowing the ex-vivo investigation of airways mechanics and airway smooth muscle contractility as well as the effect of bronchoconstrictor drugs. Our thesis is organized in five chapters: Chapter 1 presents the physiology of the neonatal respiratory system, giving particular relevance to the lung development stages during fetal life, to airways anatomy and structure and to the physiology, mechanics and regulation of developing airways. The neonatal respiratory pathophysiology is also described by illustrating definition and epidemiology of prematurity, as well as its etiology, respiratory pathophysiology and respiratory supports benefits and side effects. Respiratory disorders in preterm infants are presented with a particular focus on bronchopulmonary dysplasia, bronchial hyperresponsiveness and asthma, as well as their long-term impact on the respiratory system. In Chapter 2 the state of art is exhibited according to a classification between in vivo and ex vivo studies. Among the first category the clinical results related to spirometry, forced oscillation technique and endoscopy, whereas in the second one morphometry, endoscopy, ultrasounds and anatomical optical coherence tomography have been illustrated as techniques able to effectively study ex vivo samples. For each of these two areas the methodologies, outcomes and limits have been evaluated, as well as their peculiarities and effectiveness in evaluating different respiratory aspects associated to the pathophysiological status of the airways. Furthermore, the purpose and the choice of the appropriate animal model to be used for our study is discussed. Finally, the aims of this thesis are presented. Chapter 3 focuses on the system we have designed and developed. The chapter starts with an illustration of its general requirements, followed by the detailed description of every component. In particular, these consist in the bioreactor, the main electronic unit with its relative firmware and software, the ultrasound system and the algorithms dedicated to the data processing. The bioreactor is composed by the tissue bath and the reservoir; it is dedicated to the housing of the samples and it keeps them alive and provided with proper nourishment. In this section other tissue management devices are also presented: the tissue preparation unit, which is used to maintain the samples during the preparation phase, and the optical microscope utilized to obtain histological images both before and after the tests. The main electronic platform is dedicated to the signal detection and control. Its main blocks are the power supply unit, analog and digital sensors, actuators and the microcontroller. In particular the system employs one digital temperature and one analogic pressure sensor, whereas two pumps and three thermo-resistances as actuators. The firmware is described beginning with an introduction related to the pressure control modes, which presents the open loop and closed loop strategies; then the firmware architecture is illustrated, with a particular focus on the finite state machine developed, followed by a description of the user interface software. The ultrasound system is presented with a brief introduction related to the ultrasound physics in which the main focus is related to the acoustic waves, acoustic impedance and attenuation. After this, the ultrasound system used in this study is described. The last section of this chapter is dedicated to the data processing, which features the image processing and the overall signal processing algorithms. In the first section it is described the theory behind the Snake algorithm, which is the algorithm chosen for the measurement of the cross-section of the biological samples. In the second section the computation algorithms for the estimation of the real and imaginary part of the impedance between the pressure inside the airway and its dimensional characteristics are presented. The results are presented in Chapter 4, which is organized in two main sections, the in vitro validation and the ex vivo measurements. In the first part several evaluations performed on our set-up in order to test its proper functionality are presented. In particular we tested the temperature control, the synchronization unit, the quality of the pressure control, the quality of the ultrasonic images and the capabilities of the signal processing algorithm. In the second section there is a complete description of the results achieved, measuring airway mechanical behavior before and after bronchoconstriction. The first ex-vivo set of tests demonstrated the possibility to adequately characterize airways mechanical properties. In particular, we used three different stimulation frequencies to probe the samples (0.5 Hz, 0.250 Hz and 0.125 Hz). The highest frequency did not provide good results, mostly because of low signal-to-noise ratio on the imaging signals, suggesting the necessity of higher amplitude pressure stimuli which, however, might induce non-linear response. However, as this frequency is far from the physiological rhythm of the spontaneous breath, this issue simply suggests focusing the study on lower frequencies. In addition, the initial analysis of the airways mechanical properties performed through the impedance estimation, before the pharmacological stimulus, presented an inversely proportional relation between the dimensional measurement and the absolute value of both the real and imaginary part. This behavior is increased with decreasing stimulation frequencies. We also performed bronchoconstriction tests using methacholine and acetylcholine to study the airway response to non-specific constriction stimuli. These tests highlighted that the bronchoconstrictor drug causes modifications in the mechanical properties of the samples, and its effect is higher at lower frequencies. In conclusion, we developed and validated an experimental set up and test protocols for assessing airway mechanics and hyperreactivity in ex-vivo samples. The in vitro validation provided good results for the quantitative assessment of the AWs geometry. The design of a closed loop control algorithm for pressure control allowed reaching an optimal quality of the pressure waveform, with an average distortion from an ideal sinusoidal waveform lower than 10%. Regarding the ultrasound image quality, after appropriate tuning of the ultrasound scanner parameters, the validation study performed showed that geometrical distortions are lower than 1%. Moreover, the samples responded well to drug stimulation for the whole duration of the tests, allowing us to state that the bioreactor is fully able to keep specimens alive furnishing their cells with the correct nourishment. The ex-vivo investigations performed yielded satisfactory results on the reproducibility of the dimensional measurements and on impedance values. Baseline measurement of mechanical properties of the airways showed a dependence of airway wall impedance on internal area. This dependence is increased at low stimulation frequencies. Test with bronchoconstrictors showed results coherent with the different characteristic of the airways studied. Therefore, our device and protocols were able to provide reliable measurements, sensitive to changes induced by bronchoconstriction. The technology we developed can be used in future studies to characterize airways mechanics of lambs with various respiratory developmental stages and subjected to different respiratory treatments after birth, such as different mechanical ventilation periods (three days to 21 days) or techniques (i.e. invasive or not invasive). Hence, the investigation of how the ventilation strategies and supports at birth do influence the factors we examined could be deepened, and, therefore, this knowledge might help in designing improved clinical protocols aimed to reduce both incidence and severity of long term respiratory outcomes of prematurity.File | Dimensione | Formato | |
---|---|---|---|
TESI-Croci, Garini.pdf
accessibile in internet per tutti
Descrizione: "Testo della tesi"
Dimensione
7.34 MB
Formato
Adobe PDF
|
7.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140219