Neuromuscular diseases such as muscular dystrophy are degenerative pathologies that lead to a distributed and evolutive weakness of the whole body. To cope with the loss of legs function, nowadays technology offers motorized wheelchairs that allow affected people to move independently. As it concerns the loss of arms functionalities, several robotic orthoses for upper limbs are available on the market, but none of them seems to adapt to the specific needs of muscular dystrophy patients at the more severe stages, when the loss of upper limbs function is almost complete. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing affected people of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible. BRIDGE is composed by a light, wearable and powered five degrees of freedom upper limb exoskeleton under the direct control of the user through a joystick or vocal control. The aim of this thesis is to: i) optimize the real-time control of the BRIDGE system, ii) generate a path planning algorithm for the implementation of an autonomous control modality, able to automatically bring the exoskeleton end-effector from the current position to a desired one, without requiring the direct control of the user, iii) design and implement an Android mobile application by which the user can interact with the BRIDGE system. In order to evaluate the implemented control strategy performances, six tests were conducted in manual modality on a small group of healthy users. A path planning algorithm has been implemented and tested in a MATLAB simulation environment. Finally, an Android mobile application able to interact with the BRIDGE controller has been realized.
Le malattie neuromuscolari come la distrofia muscolare sono patologie degenerative che portano ad un progressivo indebolimento dell’intero corpo. Per far fronte alla perdita della funzionalità delle gambe la tecnologia moderna offre carrozzine motorizzate che consentono di muoversi in modo indipendente. Per quanto riguarda invece la perdita di funzionalità delle braccia, sono disponibili sul mercato diversi dispositivi robotici per arti superiori, ma nessuno di essi sembra essere adattabile anche agli stadi più avanzati della patologia, quando il paziente non è più in grado di contribuire all’esecuzione dei movimenti. L’obiettivo del progetto BRIDGE è quello realizzare un sistema robotizzato capace di adattarsi alle capacità residue del paziente al fine di renderlo il più autonomo possibile. Il sistema BRIDGE è composto da un esoscheletro motorizzato dotato di cinque gradi di libertà e montabile sulla carrozzina dell’utente. Esso può essere direttamente guidato dal paziente tramite un’interfaccia di controllo manuale (i.e., un joystick) e un’interfaccia di controllo vocale. L’obiettivo del presente lavoro di tesi è di: i) ottimizzare e testare la modalità di controllo passo-passo del sistema BRIDGE, ii) sviluppare un algoritmo di path planning per l’implementazione della modalità di controllo autonoma, durante la quale il sistema è in grado di condurre automaticamente l’end-effector dalla posizione attuale a una posizione desiderata senza richiedere la partecipazione dell’utente, iii) progettare e implementare un’applicazione Android tramite la quale l’utente possa interagire con il sistema BRIDGE. Al fine di valutare la strategia di controllo implementata sono stati condotti sei test in modalità manuale su un piccolo gruppo di soggetti sani. Un algoritmo di path planning è stato implementato e testato in ambiente simulato in MATLAB. Infine, è stata realizzata un’applicazione mobile per dispositivi Android in grado di interagire con il PC di controllo di BRIDGE.
Multi-modal control for the BRIDGE upper limb motorized exoskeleton
CALCAGNO, ALESSANDRA
2016/2017
Abstract
Neuromuscular diseases such as muscular dystrophy are degenerative pathologies that lead to a distributed and evolutive weakness of the whole body. To cope with the loss of legs function, nowadays technology offers motorized wheelchairs that allow affected people to move independently. As it concerns the loss of arms functionalities, several robotic orthoses for upper limbs are available on the market, but none of them seems to adapt to the specific needs of muscular dystrophy patients at the more severe stages, when the loss of upper limbs function is almost complete. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing affected people of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible. BRIDGE is composed by a light, wearable and powered five degrees of freedom upper limb exoskeleton under the direct control of the user through a joystick or vocal control. The aim of this thesis is to: i) optimize the real-time control of the BRIDGE system, ii) generate a path planning algorithm for the implementation of an autonomous control modality, able to automatically bring the exoskeleton end-effector from the current position to a desired one, without requiring the direct control of the user, iii) design and implement an Android mobile application by which the user can interact with the BRIDGE system. In order to evaluate the implemented control strategy performances, six tests were conducted in manual modality on a small group of healthy users. A path planning algorithm has been implemented and tested in a MATLAB simulation environment. Finally, an Android mobile application able to interact with the BRIDGE controller has been realized.File | Dimensione | Formato | |
---|---|---|---|
2018_04_CALCAGNO.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140251