The technological era has advanced to a level where Continuous evaluation of Civil Structures have developed the concepts of Structural Health Monitoring which aims to improve knowledge of the safety and maintainability of Civil Structures with the help of sensors. As sensor technologies mature and become economically affordable, the use of sensors for the health monitoring of infrastructures, such as bridges, will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection In the literatures, there are plenty of application where Structural Health Monitoring is conducted considering vibrations. Due to instigation of large amount of data from these monitoring systems, approach is to study the vibrations to chalk out strategies to manage data as it is being constantly transferred from monitoring system is necessary. Thus, Empirical approaches shall be discussed in this work to handle big data to gain meaningful acceleration values which will optimise the operations and storage. To discuss in detail, acceleration data from bridge in operation is used for case study, where in the past some damage was observed on the cables, therefore it was decided to lay down a monitoring system on set of cables for an early warning for any possible situations deserving attention. Tri-axial accelerometers sensors were used and placed on each span of bridge consisted of a steel box with 12 Post-Tensioned cables of 120 metre each. In that sense, Analysis of the data is carried in time domain and frequency domain on set of cables. The investigation is projected to induce Indexes and predictive models, which shall be presented in this work, that later can be inserted into mainstream software, implemented on cloud storage and follow course over time by which the structural integrity can be assessed efficiently.
L'era tecnologica ha avanzato ad un livello dove la valutazione continua delle strutture civili ha sviluppato i concetti di controllo di salute strutturale che mira a migliorare la conoscenza della sicurezza e della mantenibilità delle strutture civili con l'aiuto dei sensori . Come le tecnologie dei sensori maturano e diventano economicamente convenienti, l'uso di sensori per il monitoraggio sanitario delle infrastrutture, come i ponti, continuerà a crescere. La gestione dei dati diventa un problema critico non solo per la memorizzazione dei dati del sensore, ma anche per l'integrazione con il modello Bridge per supportare altre funzioni, come la gestione, la manutenzione e l'ispezione Nelle letterature, ci è abbondanza dell'applicazione dove il controllo di salute strutturale è condotto considerando le vibrazioni. A causa di istigazione di grandi quantità di dati da questi sistemi di monitoraggio, l'approccio è quello di studiare le vibrazioni al gesso fuori strategie per gestire i dati in quanto viene costantemente trasferito dal sistema di monitoraggio è necessario. Pertanto, gli approcci empirici devono essere discussi in questo lavoro per gestire Big Data per ottenere valori di accelerazione significativi che ottimizzano le operazioni e l'archiviazione. Per discutere in dettaglio, i dati di accelerazione dal ponte in funzione viene utilizzato per studio caso, dove in passato alcuni danni è stato osservato sui cavi, quindi è stato deciso di stabilire un sistema di monitoraggio su set di cavi per un avvertimento precoce per eventuali situazioni possibili meritevole di attenzione. I sensori Tri-Axial dell'accelerometro sono stati usati e disposto stati su ogni portata del ponticello ha consistito di una scatola di acciaio con 12 cavi alberino-tensionati di 120 tester ciascuno. In questo senso, l'analisi dei dati viene effettuata in dominio di tempo e dominio di frequenza sul set di cavi. L'indagine è proiettata a indurre indici e modelli predittivi, che saranno presentati in questo lavoro, che in seguito può essere inserito nel software mainstream, implementato su cloud storage e seguire corso nel tempo con il quale l'integrità strutturale può essere valutati in modo efficiente.
Preliminary evaluation of a strategy in big data management for the case of bridge monitoring
KALIA, VISHAL
2017/2018
Abstract
The technological era has advanced to a level where Continuous evaluation of Civil Structures have developed the concepts of Structural Health Monitoring which aims to improve knowledge of the safety and maintainability of Civil Structures with the help of sensors. As sensor technologies mature and become economically affordable, the use of sensors for the health monitoring of infrastructures, such as bridges, will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection In the literatures, there are plenty of application where Structural Health Monitoring is conducted considering vibrations. Due to instigation of large amount of data from these monitoring systems, approach is to study the vibrations to chalk out strategies to manage data as it is being constantly transferred from monitoring system is necessary. Thus, Empirical approaches shall be discussed in this work to handle big data to gain meaningful acceleration values which will optimise the operations and storage. To discuss in detail, acceleration data from bridge in operation is used for case study, where in the past some damage was observed on the cables, therefore it was decided to lay down a monitoring system on set of cables for an early warning for any possible situations deserving attention. Tri-axial accelerometers sensors were used and placed on each span of bridge consisted of a steel box with 12 Post-Tensioned cables of 120 metre each. In that sense, Analysis of the data is carried in time domain and frequency domain on set of cables. The investigation is projected to induce Indexes and predictive models, which shall be presented in this work, that later can be inserted into mainstream software, implemented on cloud storage and follow course over time by which the structural integrity can be assessed efficiently.File | Dimensione | Formato | |
---|---|---|---|
2018_April_Kalia.pdf
non accessibile
Descrizione: Thesis
Dimensione
6.76 MB
Formato
Adobe PDF
|
6.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140257