National and internation codes agree on setting the minimum service life of an ordinary structure to 50 years. Nevertheless, this prescription may be difficult to be fulfilled in all those cases dealing with highly aggresive environments (e.g. marine environments), in which premature degradation is most likely to occur. In all these situations, in order to avoid expensive repair activities, protective systems should be adopted. If the right environmental conditions are present, a possible solution to this problem comes from the inherent ability of concrete to autonomously seal its cracks. Despite being known for many years, it was only in the last decade that researchers started to look at this feature as a way to solve degradation problems in chloride-laden environments. The feasibility of this solution derives from the fact that, if a significant degree of crack sealing is achieved, the mechanical and physical properties of a cracked element tend to those of an identical uncracked element, thus resulting into a slower penetration rate of aggressive substances. The main problem in exploiting this phenomenon is its unreliability. Anyway previous studies found in the literature, suggest the possibility of enhancing self-healing mechanisms by introducing additional materials into the mix-design. However, as of today, not enough empirical evidence exist to draw univocal conclusions. For this reason an experimental campaign, involving the study of 342 samples, half of which containing a crystalline admixture, was carried out. The experimental campaign was subdivided into three phases. In the first one the influence of the environmental conditions on the curing of concrete was investigated, in the second one the aspect of interest was the recovery of mechanical properties for pre-damaged specimens, while in the last one the recovery of physical properties in pre-cracked specimens was assessed. By doing so, the effectiveness of the crystalline admixture as healing agent with regard to the recovery of both physical and mechanical properties was evaluated. An enhanced recovery of strength and an improved crack sealing ability were observed for samples containing the healing agent. The results obtained from the experimental campaign were then applied to a case study. Firstly the increase in service life due to the use of the crystalline admixture was evaluated. Finally, a life cycle assessment (LCA) aimed at computing the environmental benefits deriving from the use of the healing agent was carried out.

Le normative nazionali ed internazionali concordano nell'imporre pari a 50 anni la minima vita utile di una struttura ordinaria. Questa prescrizione può tuttavia risultare gravosa nel caso in cui si abbia a che fare con ambienti aggressivi (come ad esempio quelli marini), in cui è probabile il verificarsi di fenomeni di degrado prematuro. In questi casi, per evitare di incorrere in dispendiose attività manutentive, sarebbe opportuna l'adozione di misure preventive. Se sono presenti adeguate condizioni ambientali, una possibile soluzione a questo problema può arrivare dalla capacità da parte del calcestruzzo di avviare autonomamente processi di auto-richiusura delle fessure. Nonostante questa caratteristica sia nota ormai da tempo, solo nell'ultimo decennio ha suscitato l'interesse dei ricercatori come possibile soluzione ai problemi di degrado che insorgono in ambienti caratterizzati da un'alta presenza di cloruri. Questa possibilità esiste in quanto le caratteristiche meccaniche e fisiche di un elemento fessurato tendono a quelle di uno stesso elemento non fessurato ogni qualvolta la fessura mostra una chiusura significativa, portando così ad una riduzione della velocità di penetrazione degli agenti aggressivi. Il principale problema legato allo sfruttamento di questa soluzione risiede nella sua inaffidabilità. Studi presenti in letteratura suggeriscono la possibilità di migliorare questo fenomeno mediante l'aggiunta alla miscela di determinati componenti. Non sono però ad oggi disponibili dati empirici sufficienti per trarne conclusioni univoche. Si è pertanto deciso di effettuare una campagna sperimentale che ha coinvolto 342 provini in calcestruzzo, metà dei quali contenenti un additivo cristallino, utilizzato appunto quale catalizzatore delle reazioni di autoriparazione delle fessure. Lo studio è stato suddiviso in tre fasi. Nella prima è stata studiata l'influenza dell'ambiente di maturazione sullo sviluppo della resistenza a compressione, nella seconda l'attenzione si è focalizzata sul recupero delle caratteristiche meccaniche di provini predanneggiati ed infine, nella terza, si è misurato il recupero delle caratteristiche fisiche in provini prefessurati. Così facendo è stato possibile valutare l'efficacia di questo additivo in termini di recupero delle capacità meccaniche e fisiche. I risultati hanno mostrato un migliore recupero di resistenza ed una maggiore propensione nel riparare le fessure nei provini contenenti l'additivo cristallino. Quanto ottenuto mediante la campagna sperimentale è stato poi applicato ad un caso studio. Dapprima si è valutato l'allungamento della vita utile derivante dall'utilizzo di un calcestruzzo additivato. Infine, mediante un'analisi del ciclo di vita (LCA), sono stati valutati i benefici ambientali derivanti dall'utilizzo dell'additivo.

Stimulating concrete self-healing via crystalline admixtures : durability and life cycle enhancement of structures exposed to aggressive environments

RIGAMONTI, STEFANO
2017/2018

Abstract

National and internation codes agree on setting the minimum service life of an ordinary structure to 50 years. Nevertheless, this prescription may be difficult to be fulfilled in all those cases dealing with highly aggresive environments (e.g. marine environments), in which premature degradation is most likely to occur. In all these situations, in order to avoid expensive repair activities, protective systems should be adopted. If the right environmental conditions are present, a possible solution to this problem comes from the inherent ability of concrete to autonomously seal its cracks. Despite being known for many years, it was only in the last decade that researchers started to look at this feature as a way to solve degradation problems in chloride-laden environments. The feasibility of this solution derives from the fact that, if a significant degree of crack sealing is achieved, the mechanical and physical properties of a cracked element tend to those of an identical uncracked element, thus resulting into a slower penetration rate of aggressive substances. The main problem in exploiting this phenomenon is its unreliability. Anyway previous studies found in the literature, suggest the possibility of enhancing self-healing mechanisms by introducing additional materials into the mix-design. However, as of today, not enough empirical evidence exist to draw univocal conclusions. For this reason an experimental campaign, involving the study of 342 samples, half of which containing a crystalline admixture, was carried out. The experimental campaign was subdivided into three phases. In the first one the influence of the environmental conditions on the curing of concrete was investigated, in the second one the aspect of interest was the recovery of mechanical properties for pre-damaged specimens, while in the last one the recovery of physical properties in pre-cracked specimens was assessed. By doing so, the effectiveness of the crystalline admixture as healing agent with regard to the recovery of both physical and mechanical properties was evaluated. An enhanced recovery of strength and an improved crack sealing ability were observed for samples containing the healing agent. The results obtained from the experimental campaign were then applied to a case study. Firstly the increase in service life due to the use of the crystalline admixture was evaluated. Finally, a life cycle assessment (LCA) aimed at computing the environmental benefits deriving from the use of the healing agent was carried out.
CUENCA, ESTEFANÍA
DOTELLI, GIOVANNI
ING I - Scuola di Ingegneria Civile, Ambientale e Territoriale
19-apr-2018
2017/2018
Le normative nazionali ed internazionali concordano nell'imporre pari a 50 anni la minima vita utile di una struttura ordinaria. Questa prescrizione può tuttavia risultare gravosa nel caso in cui si abbia a che fare con ambienti aggressivi (come ad esempio quelli marini), in cui è probabile il verificarsi di fenomeni di degrado prematuro. In questi casi, per evitare di incorrere in dispendiose attività manutentive, sarebbe opportuna l'adozione di misure preventive. Se sono presenti adeguate condizioni ambientali, una possibile soluzione a questo problema può arrivare dalla capacità da parte del calcestruzzo di avviare autonomamente processi di auto-richiusura delle fessure. Nonostante questa caratteristica sia nota ormai da tempo, solo nell'ultimo decennio ha suscitato l'interesse dei ricercatori come possibile soluzione ai problemi di degrado che insorgono in ambienti caratterizzati da un'alta presenza di cloruri. Questa possibilità esiste in quanto le caratteristiche meccaniche e fisiche di un elemento fessurato tendono a quelle di uno stesso elemento non fessurato ogni qualvolta la fessura mostra una chiusura significativa, portando così ad una riduzione della velocità di penetrazione degli agenti aggressivi. Il principale problema legato allo sfruttamento di questa soluzione risiede nella sua inaffidabilità. Studi presenti in letteratura suggeriscono la possibilità di migliorare questo fenomeno mediante l'aggiunta alla miscela di determinati componenti. Non sono però ad oggi disponibili dati empirici sufficienti per trarne conclusioni univoche. Si è pertanto deciso di effettuare una campagna sperimentale che ha coinvolto 342 provini in calcestruzzo, metà dei quali contenenti un additivo cristallino, utilizzato appunto quale catalizzatore delle reazioni di autoriparazione delle fessure. Lo studio è stato suddiviso in tre fasi. Nella prima è stata studiata l'influenza dell'ambiente di maturazione sullo sviluppo della resistenza a compressione, nella seconda l'attenzione si è focalizzata sul recupero delle caratteristiche meccaniche di provini predanneggiati ed infine, nella terza, si è misurato il recupero delle caratteristiche fisiche in provini prefessurati. Così facendo è stato possibile valutare l'efficacia di questo additivo in termini di recupero delle capacità meccaniche e fisiche. I risultati hanno mostrato un migliore recupero di resistenza ed una maggiore propensione nel riparare le fessure nei provini contenenti l'additivo cristallino. Quanto ottenuto mediante la campagna sperimentale è stato poi applicato ad un caso studio. Dapprima si è valutato l'allungamento della vita utile derivante dall'utilizzo di un calcestruzzo additivato. Infine, mediante un'analisi del ciclo di vita (LCA), sono stati valutati i benefici ambientali derivanti dall'utilizzo dell'additivo.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
2018_04_Rigamonti.pdf

non accessibile

Descrizione: Testo della tesi
Dimensione 7.59 MB
Formato Adobe PDF
7.59 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/140274