MEMS (Micro-Electro-Mechanical-System) devices are adopted for various application such as measuring accelerations, pressures or concentrations of substances in certain environments and they are characterized by low production costs and small dimensions. Microresonators are electro-mechanical structures which vibrates at a particular resonance frequency. In recent years they are employed for clock applications as substitutes of quartz resonators that reached their limits in terms of miniaturization and cost reduction. Two of the principal challenges in designing MEMS resonators are: frequency stability over temperature and high values of thermoelastic quality factor. The main task of this thesis is the modeling and investigation of the temperature behavior of some resonators. In the first part of the thesis a description of silicon as structural material is given, putting attention on how its elastic constants change in temperature as function of doping concentration and crystal orientation. After that, monodimensional analytical models are introduced in order to calculate the temperature frequency variation for different types of resonators: flexural, torsional and Lamé mode resonators. The validity of the models is verified through a comparison of the analytical results with the numerical ones obtained from FEM (Finite-Elelment-Method) analysis. The focus is put on a tuning fork resonator and the thermoelastic quality factor is evaluated with a FEM code, as function of doping concentration, device orientation and presence of holes in the structure. Finally an optimization procedure, based on the evolutionary algorithm CMA-ES (Covariance- Matrix-Adaptation Evolutionary-Strategy), of a tuning fork resonator with an elongated slit is implemented, maximizing the quality factor and minimizing frequency variation. In the last part of the thesis a commercial tuning fork resonator, characterized by a very good temperature behavior, is analyzed. Numerical results show a god agreement with experimental measurements available for such structure.
I MEMS (Micro-Electro-Mechanical-System) sono dispositivi utilizzati per varie applicazioni tra cui misurare un’accelerazione, una pressione, o la concentrazione di una sostanza in un ambiente e sono caratterizzati da bassi costi produttivi e piccole dimensioni. In questo contesto si collocano i microrisonatori MEMS, strutture elettro-meccaniche che vengono tenute in vibrazione a una particolare frequenza di risonanza. Negli ultimi anni sono sempre più utilizzati in applicazioni segnatempo, a sostituire i risonatori al quarzo, giunti al limite per miniaturizzazione e riduzione dei costi di fabbricazione. Nella progettazione dei risonatori MEMS la stabilità di frequenza in temperatura e l’elevato fattore di qualità termoelastico rappresentano due tra le sfide principali. L’obiettivo del presente elaborato è quello di modellare e valutare il comportamento in temperatura di alcune tipologie di risonatori. In partenza viene descritto il silicio come materiale strutturale. Si presentano le costanti elastiche e la loro dipendenza dalla temperatura, dalla concentrazione di drogante e dell’orientazione del cristallo. Successivamente vengono elaborati dei modelli analitici mono-dimensionali per il calcolo della variazione di frequenza per diverse tipologie di risonatori: flessionali, torsionali e a modo di Lamé. La validità d i risultati é verificata mediante confronto con simulazioni FEM (Finite-Element-Method). Quindi, si indaga l’andamento del fattore di qualità termoelastico per un risonatore tuning fork in funzione del drogaggio del silicio, dell’orientazione del dispositivo e dell’aggiunta di fori nella struttura. Si sono svolte analisi FEM valutando diverse combinazioni e infine si è impostata un’ottimizzazione, utilizzando l’algoritmo evolutivo CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy), di una geometria tuning fork con un foro di forma allungata, massimizzando il fattore di qualità e nel contempo minimizzando la variazione di frequenza. Nell’ultima parte della Tesi si è analizzato un risonatore tuning fork commerciale, caratterizzato da un ottimo comportamento in temperatura. Si sono svolte simulazioni numeriche e si è mostrato un buon accordo con i dati sperimentali.
Modellazione numerica di microrisonatori
GUERCILENA, ANDREA
2016/2017
Abstract
MEMS (Micro-Electro-Mechanical-System) devices are adopted for various application such as measuring accelerations, pressures or concentrations of substances in certain environments and they are characterized by low production costs and small dimensions. Microresonators are electro-mechanical structures which vibrates at a particular resonance frequency. In recent years they are employed for clock applications as substitutes of quartz resonators that reached their limits in terms of miniaturization and cost reduction. Two of the principal challenges in designing MEMS resonators are: frequency stability over temperature and high values of thermoelastic quality factor. The main task of this thesis is the modeling and investigation of the temperature behavior of some resonators. In the first part of the thesis a description of silicon as structural material is given, putting attention on how its elastic constants change in temperature as function of doping concentration and crystal orientation. After that, monodimensional analytical models are introduced in order to calculate the temperature frequency variation for different types of resonators: flexural, torsional and Lamé mode resonators. The validity of the models is verified through a comparison of the analytical results with the numerical ones obtained from FEM (Finite-Elelment-Method) analysis. The focus is put on a tuning fork resonator and the thermoelastic quality factor is evaluated with a FEM code, as function of doping concentration, device orientation and presence of holes in the structure. Finally an optimization procedure, based on the evolutionary algorithm CMA-ES (Covariance- Matrix-Adaptation Evolutionary-Strategy), of a tuning fork resonator with an elongated slit is implemented, maximizing the quality factor and minimizing frequency variation. In the last part of the thesis a commercial tuning fork resonator, characterized by a very good temperature behavior, is analyzed. Numerical results show a god agreement with experimental measurements available for such structure.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
31.96 MB
Formato
Adobe PDF
|
31.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140292