Large bone defects caused by diseases or fractures lack the ability of self-regeneration and therefore represent a relevant medical concern. Bone tissue engineering (BTE) is one of the most promising therapeutic strategies in orthopedics, particularly for the bone treatment in these extreme situations. Providing a 3D biomimetic template to guide osseous regeneration is the common purpose of BTE approaches. In order to mimic the natural bone matrix and to better suit the demands of the host tissue, many strategies have involved the combined use of bioactive glasses/ceramics and biodegradable natural polymers. Electrophoretic deposition (EPD) technique was largely used for covering metals with ceramic, polymeric and hybrid coatings, but recently it was also investigated as an economic, simple and effective bottom-up method to synthetize 3D self-standing composite scaffolds, useful in the bone regeneration field. Chitosan is one of the most widely-used natural polymers in BTE research due to its desired properties such as bio-compatibility/degradability, antibacterial features and thermal stability. In addition, it was demonstrated that chitosan plays an important role in the attachment, differentiation, and morphogenesis of osteoblasts because of its structural similarities with glycosaminoglycans, the major component of bone and cartilage. To further enhance the performance of chitosan, gelatin can be utilized for preparing composites with better hydrophilicity and biological compatibility. Good cell-interactive properties of gelatin have also been reported, besides its non-toxicity, and non-immunogenicity. Due to its high bioactivity, 45S5 Bioglass® was recently identified as a suitable material for osseous tissue repairing. In this specific formulation, bioactive glass is highly osteo-conductive/inductive, inducing hydroxyapatite formation. Niobium is a relatively unexplored metallic ion in tissue engineering, but it seems enhances human osteoblast function, showing low cytotoxicity and antibacterial properties. In the present work, two different bioactive glass compositions were tested: the standard (45S5) and an innovative one containing niobium. The first purpose of this study was to optimize parameters affecting the deposition of chitosan-based scaffolds containing bioactive glass particles in order to develop uniform deposits with microstructural homogeneity, adequate thickness and porous structure. Obtained scaffolds were then characterized in terms of morphology, stability in physiological-like environment and bioactivity in order to evaluate how this new niobium-containing Bioglass® formulation could influence samples features. Moreover, MG-63 osteoblast-like cells were used to assess their biocompatibility, as well as E. coli and S. lutea bacteria for evaluating their antibacterial efficiency.
I difetti ossei di grandi dimensioni causati da malattie o fratture non hanno la capacità di autorigenerazione e rappresentano quindi un problema medico rilevante. L’ingegneria del tessuto osseo (BTE) è una delle strategie terapeutiche più promettenti in ortopedia, in particolare per il trattamento dell’osso in queste situazioni estreme. Fornire un costrutto biomimetico 3D per guidare la rigenerazione ossea è lo scopo comune degli approcci BTE. Per simulare la matrice ossea naturale e per adattarsi meglio alle richieste del tessuto ospite, molte strategie hanno comportato l’uso combinato di vetri bioattivi/ceramici e polimeri naturali biodegradabili. La tecnica di deposizione elettroforetica (EPD) è stata ampiamente utilizzata per ricoprire metalli con rivestimenti ceramici, polimerici ed ibridi, ma recentemente è stata studiata come metodo bottom-up economico, semplice ed efficace per la sintesi di scaffold porosi autoportanti 3D, utili nel campo della rigenerazione ossea. Il chitosano è uno dei polimeri naturali più utilizzati nell’ambito di BTE grazie alle sue auspicabili proprietà come la bio-compatibilità/degradabilità, le caratteristiche antibatteriche e la stabilità termica. Inoltre, è stato dimostrato che il chitosano svolge un ruolo importante nell’attaccamento, differenziazione e morfogenesi degli osteoblasti a causa della sua somiglianza strutturale con i glicosaminoglicani, componente principale dell’osso e della cartilagine. Per migliorare ulteriormente le prestazioni del chitosano, la gelatina può essere utilizzata per preparare compositi maggiormente idrofilici e con elevata compatibilità biologica. Oltre alla sua non tossicità e non immunogenicità, sono state riscontrate anche buone proprietà di interazione con le cellule. Grazie alla sua elevata bioattività, il Biovetro®45S5 è stato recentemente identificato come materiale adatto alla riparazione di tessuti ossei. In questa specifica formulazione, tale vetro è stato riconosciuto come altamente osteo-conduttivo/induttivo, inducendo la formazione di idrossiapatite. Il niobio è uno ione metallico relativamente inesplorato nell’ingegneria dei tessuti, ma sembra potenziare la funzione degli osteoblasti umani, mostrando proprietà antibatteriche e di bassa citotossicità. Nel presente lavoro sono state testate due diverse composizioni di vetro bioattivo: quella standard (45S5) e quella innovativa contenente niobio, uno ione metallico noto per le proprietà antibatteriche. Il primo proposito di questo studio è stato quello di ottimizzare i parametri che influiscono sulla deposizione di scaffold a base di chitosano e contenenti particelle di vetro bioattivo al fine di sviluppare depositi uniformi con omogeneità microstrutturale, spessore adeguato e struttura porosa. I costrutti ottenuti sono stati quindi caratterizzati in termini morfologici, di stabilità in ambiente fisiologico e di bioattività al fine di valutare come questa nuova formulazione di Biovetro® contenente niobio potesse influenzare le caratteristiche dei campioni. Inoltre, le cellule osteoblastiche MG-63 sono state utilizzate per valutazioni di biocompatibilità, così come i batteri E. coli and S. lutea sono stati impiegati per valutare l’efficacia antibatterica dei campioni.
Composite scaffolds with doped-bioactive glass for bone tissue engineering
PANNO, ELIANA
2016/2017
Abstract
Large bone defects caused by diseases or fractures lack the ability of self-regeneration and therefore represent a relevant medical concern. Bone tissue engineering (BTE) is one of the most promising therapeutic strategies in orthopedics, particularly for the bone treatment in these extreme situations. Providing a 3D biomimetic template to guide osseous regeneration is the common purpose of BTE approaches. In order to mimic the natural bone matrix and to better suit the demands of the host tissue, many strategies have involved the combined use of bioactive glasses/ceramics and biodegradable natural polymers. Electrophoretic deposition (EPD) technique was largely used for covering metals with ceramic, polymeric and hybrid coatings, but recently it was also investigated as an economic, simple and effective bottom-up method to synthetize 3D self-standing composite scaffolds, useful in the bone regeneration field. Chitosan is one of the most widely-used natural polymers in BTE research due to its desired properties such as bio-compatibility/degradability, antibacterial features and thermal stability. In addition, it was demonstrated that chitosan plays an important role in the attachment, differentiation, and morphogenesis of osteoblasts because of its structural similarities with glycosaminoglycans, the major component of bone and cartilage. To further enhance the performance of chitosan, gelatin can be utilized for preparing composites with better hydrophilicity and biological compatibility. Good cell-interactive properties of gelatin have also been reported, besides its non-toxicity, and non-immunogenicity. Due to its high bioactivity, 45S5 Bioglass® was recently identified as a suitable material for osseous tissue repairing. In this specific formulation, bioactive glass is highly osteo-conductive/inductive, inducing hydroxyapatite formation. Niobium is a relatively unexplored metallic ion in tissue engineering, but it seems enhances human osteoblast function, showing low cytotoxicity and antibacterial properties. In the present work, two different bioactive glass compositions were tested: the standard (45S5) and an innovative one containing niobium. The first purpose of this study was to optimize parameters affecting the deposition of chitosan-based scaffolds containing bioactive glass particles in order to develop uniform deposits with microstructural homogeneity, adequate thickness and porous structure. Obtained scaffolds were then characterized in terms of morphology, stability in physiological-like environment and bioactivity in order to evaluate how this new niobium-containing Bioglass® formulation could influence samples features. Moreover, MG-63 osteoblast-like cells were used to assess their biocompatibility, as well as E. coli and S. lutea bacteria for evaluating their antibacterial efficiency.File | Dimensione | Formato | |
---|---|---|---|
2018_4_Panno.pdf
non accessibile
Descrizione: Tesi magistrale
Dimensione
4.38 MB
Formato
Adobe PDF
|
4.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140329