Titanium and titanium alloys are one of the most used implant materials for biomedical applications due to their outstanding properties, including high biocompatibility, resistance to body fluid effects, great tensile strength, flexibility and high corrosion resistance [1]. The clinical success of oral or orthopaedic implants is related to their early osseointegration with the forming tissue. Cell adhesion on the prosthesis is influenced by surface properties, combined with charge distribution and material chemistry. With the aim to improve the osseointegration, decrease bacterial adhesion and inflammatory response, and to avoid the foreign body response, tissue engineer and nanotechnology researchers developed different techniques for implants surface modification [2]. Treatments, such as titanium plasma-spraying, grit-blasting, acid-etching, anodization or calcium phosphate coatings are some of the most studied process [3]. Among various advanced methods aimed at improving the interfacial properties and lifetime of titanium implants, the generation of nanotubes by anodization treatment have attracted considerable attention because of its simplicity and its controllable, reproducible results [4]. This technique allows the generation of highly ordered and perpendicularly oriented nanotubular structures.Several works reported an possible modulation of the nanotube morphology with the variation of the process parameters. The nanotubes dimensions have a linear dependence with the applied potential and anodization duration [5] [6] [7]. With the increasing of the voltage, it is possible to observe a rising of nanotubes diameters and length. Similarly, the electrolyte characteristics play a crucial role in the nanotube fabrication. It results that the generation of smooth nanotubes walls is promoted by the use of a ethylene glycol-based electrolyte [8], and parameters as electrolyte pH, temperature and water content can affect the nanotube morphology [9]. Nanotube structures of different diameter size also showed an improved cell attachment [10] on the materials surface, for this reason they can be applied as implants coating to accelerate the tissue healing. There is not yet a defined optimal nanotubes diameter size that promote cellular attachment and proliferation. There are some articles that support a smaller diameters (15-30 nm) [11] and other works a bigger one (150-200 nm) [12] [13]. Titania nanotubes can also be adopted as drug delivery system, loading the interested molecule in the tubular structures using them as reservoir [14]. One of the candidates as bioactive molecule that could be loaded on this structures is the gentamicin. Gentamicin is an aminoglycoside antibiotic that is widely used to prevent implant-related infections. Nanotubes loaded with gentamicin can deliver antibiotics locally to inhibit bacterial adhesion on an implant without causing systemic toxicity while maintaining excellent osseointegrative properties. The aim of this project is to generate high ordered nanotube arrays with open top configuration and describe the nanotube size dependence with the anodization parameters. Successively, nanotubes will be loaded with the antibiotic and it will be study the bacteria and cellular affinity with the titania nanotubes.Titanium anodization process was performed in ethylene glycol-based electrolyte applying a potentiostatic regime and under static conditions. Particular attention was also given to the water content of the electrolyte. According to the literature, it is known that the quantity of water can affect the nanotubes morphology [15], for this reason a continuous water monitoring was made using a Karl-Fisher device. In case of a too high water content, the electrolyte was adjusted to bring the initial component quantity. As described in literature, it was noticed a linear dependence between nanotubes size and applied potential.All the anodization process lead to the formation of a hazy layer (nanograss) on the top of the nanotubes produced by the nanotubes walls thinning. To eliminate the formed nanograss, after each anodization process all the samples were treated with an ultrasound bath of few seconds. Figure 3 shows the nanotubes surface after and before this treatment. We decided to study three different diameters size.The choice of these diameter sizes was taken to compare the capacity to collect antibiotics molecule with a better cell growth conductivity. It was conduct a surface hydrophilicity test for the three different nanotube diameters. The surface wettability was studied because it can affect the capacity of cell attachment: it is well known that cells have a better adhesion on hydrophobic surfaces instead of a hydrophilic one. By this experiments it resulted that surfaces with smaller nanotubes are characterized by a higher hydrophilicity respect the smaller one.Furthermore is was observed a linear relationship between nanotubes size and contact angle dimensions. After the nanotube arrays characterizations, samples were functionalized with gentamicin and the antibiotic kinetics release was defined. Nanotube drug release showed a higher drug quantity released from the bigger nanotubes respect the smallest one. It was hypothesized that bigger nanotubes can contain a higher drug quantity respect the other two studied diameter size. It was noticed that the drug delivery kinetics was characterized by an initial drug burst during the first 2 hours. With the aim of decreasing the gentamicin quantity release during this period, the samples were covered by an alginate layer. In this case, the antibiotic deliver is more distributed in time but in a lower quantity respect the untreated samples. Bacteriological test were conduct studying the interaction between samples and Staphylococcus aureus. This bacteria was chosen as it is the main infecting pathogen responsible for about two thirds of chronic osteomyelitis cases [16]. Colony forming unit counting test was made on agar plates to show the antibacterial action of different samples. It showed the absence of S. aureus in the suspension with those samples loaded without gentamicin and was observed a slight alginate and nanotubes antibacterial action. A test to quantify the number of bacteria attached on the sample surface showed an antibacterial action of the nanotubes respect the pure titanium surface. All the treated samples indeed did not show any statistical difference of the attached bacteria number between the three different diameters. It was also performed an agar inhibition test that shows a bigger blast radius (2,85 ± 0,064) of the samples loaded with gentamicin and in absence of the alginate layer. The covered samples showed a smallest radius (2,85 ± 0,064), probably caused by the interaction between antibiotic and alginate. To study the cellular interaction, Saos-2 cells were seeded on the different types of samples with and without covering. We conducted two different staining: a HPI to show the live or dead cells and a phalloidin staining to show the cell morphology on the samples. With HPI staining it is possible to distinguish live cells from the dead or the apoptotic one. Live cells are stained in a darker blue respect the apoptotic one which are characterized by a brighter blue, while dead cells are stained in pink/red. This analysis showed a different cellular behaviour depending on the samples surfaces characteristics. Untreated samples showed a central area with a high cell density after 24 hours, but, after 72 hours was observed a decreasing number of the living cells. Treated samples indeed, showed an increasing number of cells after 72 hours without any differences between the three samples. On the other hand, Ti/NT 20 samples showed a smaller number of apoptotic cells respect the other studied disks. Furthermore, with a phalloidin staining was possible to observe a more spread cell shape on the samples with smaller nanotubes and a more circular morphology on the disks whit present bigger nanotubes diameters. Finally, was performed a SEM sample surface observation which confirmed what was previously observed with the preceding experiments. It will be interesting for future development, to study various nanotube length fixing an optimum diameter size to maximize the quantity of drug release. In addition it will be useful to study other method to control the drug release trying to decrease the initial burst substituting the alginate use.
Il Titanio e le sue leghe sono tra i materiali più utilizzati in ambito biomedico grazie alle loro caratteristiche come l’elevata biocompatibilità, la resistenza all’aggressività dell’ambiente biologico, la grande resistenza alla trazione e corrosione e, in fine, la flessibilità [1]. La fissazione ottimale di un impianto dentale o ortopedico è strettamente legata alla loro osseointegrazione con il tessuto neogenerato durante le prime fasi della guarigione. L’adesione cellulare sulla superficie di un dispositivo è influenzata da molti fattori tra cui le proprietà superficiali dell’impianto, la distribuzione di carica e la chimica superficiale del materiale. Con lo scopo di migliorare l’osseointegrazione, diminuire l’adesione batterica e la risposta infiammatoria, e per evitare una risposta immunitaria, sono stati sviluppati differenti tecniche per la modifica della superficie dei dispositivi in titanio [2]. Trattamenti superficiali come titanio plasma-spraying, sabbiatura, acid-etching, anodizzazione e rivestimenti di calcio fosfato sono alcuni dei processi più studiati [3]. Tra questi, la formazione di nanotubi mediante anodizzazione ha attratto l’attenzione di numerosi ricercatori grazie alla sua facilità di processo e ai risultati facilmente controllabili e riproducibili [4]. Questa tecnica permette la formazione di nanotubi altamente ordinati e orientati perpendicolarmente rispetto alla superficie dell’impianto.La possibile modulazione delle morfologia dei nanotubi viene descritta da numerosi articoli in cui le dimensioni di queste strutture tubolari viene regolata grazie alla variazione dei parametri di processo. Da queste analisi è risultato che i nanotubi hanno una dipendenza lineare con il potenziale applicato e durata di processo [5] [6] [7]. Con l’aumentare del potenziale infatti è possibile osservare un accrescimento dei diametri e della lunghezza dei nanotubi. Anche l’elettrolita gioca un ruolo importante nella generazione dei nanotubi; è stato dimostrato che la generazione di strutture tubolari caratterizzati da pareti lisce è promosso dall’utilizzo di un elettrolita a base di etilene glicole [8], e parametri come pH, temperatura e contenuto d’acqua dell’elettrolita possono modificare la morfologia dei nanotubi [9]. Nanotubi di diametri differenti hanno mostrato promuovere una maggior adesione cellulare sulla superficie del materiale [10], per questo motivo possono essere impiegati come rivestimenti di impianti per accelerare la guarigione dei tessuti. Ancora non è stato raggiunto un accordo su quale sia la dimensione ottimale dei nanotubi per favorire l’adesione cellulare e promuovere la loro vitalità: alcuni lavori supportano diametri di dimensioni minori (20-30nm) [11] mentre altri lavori diametri di dimensioni maggiori (150-200 nm) [12] [13]. I nanotubi possono essere anche utilizzati come sistemi per il drug delivey, caricando i campioni con la molecola d’interesse e usando tali strutture come reservoir [14]. Per il caricamento dei nanotubi è stato scelto come farmaco la gentamicina poiché ampiamente utilizzato per la prevenzione di infezioni a seguito di un impianto. I nanotubi caricati con gentamicina possono rilasciare localmente elevate quantità di antibiotico, inibendo l’adesione batterica sulla superficie dell’impianto senza causare una tossicità sistemica e contemporaneamente conferire all’impianto eccellenti proprietà osseointegrative. Lo scopo di questo progetto è di generare nanotubi altamente ordinati con una configurazione open top e descrivere la relazione delle dimensioni dei nanotubi con i parametri di processo.Successivamente, i nanotubi saranno caricati con gentamicina e verrà studiata la loro interazione con cellule e batteri. Il processo di anodizzazione del titanio è stato condotto in un elettrolita a base di etilene glicole applicando un regime potenziostatico e in condizioni statiche del mezzo. Particolare attenzione è stata anche data al contenuto di acqua nell’elettrolita. Da letteratura è noto che la quantità di acqua può determinare la morfologia dei nanotubi [15], per questo motivo è stato svolto un continuo monitoraggio mediante titolazione dell’acqua con il metodo di Karl-Fisher. In caso di una quantità troppo elevate di acqua, l’elettrolita è stato aggiustato per riportare le concentrazioni ai valori iniziali. Come descritto in letteratura, è stata osservata una dipendenza lineare tra le dimensioni dei nanotubi e il potenziale applicato.Tutti i processi di anodizzazione causano la produzione di nanograss all’estremità dei nanotubi dovuta all’assottigliamento delle pareti di queste strutture. Per eliminare questo layer superficiale, dopo ciascuna anodizzazione ogni campione è stato sottoposto a un trattamento a ultrasuoni di pochi secondi.Sono stati studiati campioni con nanotubi di tre differenti diametri.La scelta di questi valori è stata presa per poter individuare il miglior bilancio tra ma maggior capacità di contenere le molecole di antibiotico (che si ipotizza essere direttamente proporzionale con il diametro) con una migliore vitalità che da letteratura sembra essere promosso da diametri di dimensioni minori. Successivamente, è stato condotto un test sull’idrofilicità delle superfici mediante il calcolo dell’angolo di contatto per le tre differenti dimensioni dei nanotubi. È importante studiare la bagnabilità delle superfici in quanto essa determina la capacità delle cellule di aderire su di essa: è noto che superfici idrofobiche favoriscano l’adesione cellulare rispetto a quelle idrofiliche. Da questa misura è risultato che le superfici con nanotubi di dimensioni più piccole hanno valori minori di angolo di contatto, suggerendo che siano più idrofiliche rispetto ai nanotubi più grandi.Inoltre, è stata osservata una relazione lineare tra la grandezza dei nanotubi e l’angolo di contatto.Dopo la caratterizzazione dei nanotubi, i campioni sono stati caricati su una faccia con la gentamicina e successivamente è stata descritta la cinetica di rilascio dell’antibiotico. Tale esperimento ha mostrato un maggiore rilascio di gentamicina dai nanotubi di dimensioni maggiori rispetto a quelli più piccoli. É stato dedotto che diametri più grandi possono contenere una quantità maggiore di antibiotico rispetto gli altri due diametri studiati. É stato osservato un elevato rilascio della gentamicina durante le prime due ore di rilascio da parte di tutti i tipi di campioni . Con lo scopo di diminuire questo fenomeno, i campioni sono stati ricoperti con un layer di alginato, in modo da distribuire maggiormente nel tempo la quantità di antibiotico. Come risultato, è stato osservato un rilascio più graduale dell’antibiotico ma in quantità minori rispetto ai campioni non coperti. Test batteriologici sono stati condotti per studiare l’interazione fra nanotubi e Staphylococcus aureus. Questo batterio è stato scelto in quanto responsabile di circa un terzo dei casi di osteomielite a seguito di un impianto prostetico[16]. Per determinare l’azione antibatterica di differenti campioni su batteri in sospensione, è stata condotta una conta delle colonie formate su un piatto di agarosio. É stato osservato che la presenza di gentamicina causi la totale assenza di batteri mentre è stata rilevata una lieve azione antibatterica da parte dei nanotubi e del layer di alginato. Per quanto riguarda i batteri adesi alla superficie dei campioni, i dischi anodizzati mostrano un numero di batteri minore rispetto a quelli di puro titanio. Invece, è stato osservato mediante un’analisi statistica che nanotubi di diametri differenti non mostrano alcuna differenza significativa per quanto riguarda il numero di batteri adesi sulla superficie. Successivamente è stato effettuato un test per osservare l’alone di inibizione causato dai diversi campioni sul piatto di agarosio. Questo test ha mostrato un maggior raggio d’azione determinato dai campioni caricati con la sola gentamicina (2,85 ± 0,064) rispetto a quelli ricoperti anche dall’alginato (2,85 ± 0,064). Questo comportamento può essere spiegato dalle interazioni che si creano fra l’antibiotico e il biopolimero e che ne ostacolano il rilascio.Per studiare l’interazione cellulare con i campioni, delle Saos-2 sono state seminate su tutti i differenti tipi di dischetti con e senza copertura. Sono stati effettuati due tipi di staining: un HPI per riconoscere le cellule vive, morte e apoptotiche e uno staining con la falloidina per evidenziare la morfologia delle cellule. Le cellule vive sono caratterizzate da un colore blu scuro mentre quelle apoptotiche da un blu più brillante. Le cellule morte invece, sono colorate di rosa/rosso. Questa analisi ha mostrato differenti comportamenti cellulari a seconda delle caratteristiche della superficie del campione. I campioni non trattati mostrano dopo 24 ore un’area centrale caratterizzata da un’elevata densità cellulare che però dopo 72 ore sembra promuovere la morte cellulare. I campioni trattati invece, mostrano un’ aumento del numero di cellule vive dopo 72 ore senza però nessuna differenza significativa tra i diversi diametri dei nanotubi. D’altro canto i campioni Ti/NT20 hanno mostrato un minor numero di cellule apoptotiche rispetto gli altri dischi studiati.In aggiunta, grazie all’analisi svolta con la falloidina è stato osservato un maggior spreading cellulare sui campioni con nanotubi di diametro più piccolo (Ti/NT20), mentre le cellule seminate su nanotubi più grandi mostrano una forma più circolare. Infine un’analisi della superficie dei campioni mediante SEM ha confermato quanto precedentemente osservato durante gli esperimenti prima descritti. Sarebbe interessante in seguito studiare diverse lunghezze dei nanotubi una volta fissato il diametro ottimale per massimizzare la quantità di farmaco rilasciata. Inoltre potrebbe essere utile studiare un altro metodo per controllare il rilascio graduale della gentamicina in sostituzione all’alginato.
Synthesis of titanium dioxide nanotubes loaded with Gentamicin to improve osseointegration and decrease osteomyelitis incidence
PREDA, VALERIA
2016/2017
Abstract
Titanium and titanium alloys are one of the most used implant materials for biomedical applications due to their outstanding properties, including high biocompatibility, resistance to body fluid effects, great tensile strength, flexibility and high corrosion resistance [1]. The clinical success of oral or orthopaedic implants is related to their early osseointegration with the forming tissue. Cell adhesion on the prosthesis is influenced by surface properties, combined with charge distribution and material chemistry. With the aim to improve the osseointegration, decrease bacterial adhesion and inflammatory response, and to avoid the foreign body response, tissue engineer and nanotechnology researchers developed different techniques for implants surface modification [2]. Treatments, such as titanium plasma-spraying, grit-blasting, acid-etching, anodization or calcium phosphate coatings are some of the most studied process [3]. Among various advanced methods aimed at improving the interfacial properties and lifetime of titanium implants, the generation of nanotubes by anodization treatment have attracted considerable attention because of its simplicity and its controllable, reproducible results [4]. This technique allows the generation of highly ordered and perpendicularly oriented nanotubular structures.Several works reported an possible modulation of the nanotube morphology with the variation of the process parameters. The nanotubes dimensions have a linear dependence with the applied potential and anodization duration [5] [6] [7]. With the increasing of the voltage, it is possible to observe a rising of nanotubes diameters and length. Similarly, the electrolyte characteristics play a crucial role in the nanotube fabrication. It results that the generation of smooth nanotubes walls is promoted by the use of a ethylene glycol-based electrolyte [8], and parameters as electrolyte pH, temperature and water content can affect the nanotube morphology [9]. Nanotube structures of different diameter size also showed an improved cell attachment [10] on the materials surface, for this reason they can be applied as implants coating to accelerate the tissue healing. There is not yet a defined optimal nanotubes diameter size that promote cellular attachment and proliferation. There are some articles that support a smaller diameters (15-30 nm) [11] and other works a bigger one (150-200 nm) [12] [13]. Titania nanotubes can also be adopted as drug delivery system, loading the interested molecule in the tubular structures using them as reservoir [14]. One of the candidates as bioactive molecule that could be loaded on this structures is the gentamicin. Gentamicin is an aminoglycoside antibiotic that is widely used to prevent implant-related infections. Nanotubes loaded with gentamicin can deliver antibiotics locally to inhibit bacterial adhesion on an implant without causing systemic toxicity while maintaining excellent osseointegrative properties. The aim of this project is to generate high ordered nanotube arrays with open top configuration and describe the nanotube size dependence with the anodization parameters. Successively, nanotubes will be loaded with the antibiotic and it will be study the bacteria and cellular affinity with the titania nanotubes.Titanium anodization process was performed in ethylene glycol-based electrolyte applying a potentiostatic regime and under static conditions. Particular attention was also given to the water content of the electrolyte. According to the literature, it is known that the quantity of water can affect the nanotubes morphology [15], for this reason a continuous water monitoring was made using a Karl-Fisher device. In case of a too high water content, the electrolyte was adjusted to bring the initial component quantity. As described in literature, it was noticed a linear dependence between nanotubes size and applied potential.All the anodization process lead to the formation of a hazy layer (nanograss) on the top of the nanotubes produced by the nanotubes walls thinning. To eliminate the formed nanograss, after each anodization process all the samples were treated with an ultrasound bath of few seconds. Figure 3 shows the nanotubes surface after and before this treatment. We decided to study three different diameters size.The choice of these diameter sizes was taken to compare the capacity to collect antibiotics molecule with a better cell growth conductivity. It was conduct a surface hydrophilicity test for the three different nanotube diameters. The surface wettability was studied because it can affect the capacity of cell attachment: it is well known that cells have a better adhesion on hydrophobic surfaces instead of a hydrophilic one. By this experiments it resulted that surfaces with smaller nanotubes are characterized by a higher hydrophilicity respect the smaller one.Furthermore is was observed a linear relationship between nanotubes size and contact angle dimensions. After the nanotube arrays characterizations, samples were functionalized with gentamicin and the antibiotic kinetics release was defined. Nanotube drug release showed a higher drug quantity released from the bigger nanotubes respect the smallest one. It was hypothesized that bigger nanotubes can contain a higher drug quantity respect the other two studied diameter size. It was noticed that the drug delivery kinetics was characterized by an initial drug burst during the first 2 hours. With the aim of decreasing the gentamicin quantity release during this period, the samples were covered by an alginate layer. In this case, the antibiotic deliver is more distributed in time but in a lower quantity respect the untreated samples. Bacteriological test were conduct studying the interaction between samples and Staphylococcus aureus. This bacteria was chosen as it is the main infecting pathogen responsible for about two thirds of chronic osteomyelitis cases [16]. Colony forming unit counting test was made on agar plates to show the antibacterial action of different samples. It showed the absence of S. aureus in the suspension with those samples loaded without gentamicin and was observed a slight alginate and nanotubes antibacterial action. A test to quantify the number of bacteria attached on the sample surface showed an antibacterial action of the nanotubes respect the pure titanium surface. All the treated samples indeed did not show any statistical difference of the attached bacteria number between the three different diameters. It was also performed an agar inhibition test that shows a bigger blast radius (2,85 ± 0,064) of the samples loaded with gentamicin and in absence of the alginate layer. The covered samples showed a smallest radius (2,85 ± 0,064), probably caused by the interaction between antibiotic and alginate. To study the cellular interaction, Saos-2 cells were seeded on the different types of samples with and without covering. We conducted two different staining: a HPI to show the live or dead cells and a phalloidin staining to show the cell morphology on the samples. With HPI staining it is possible to distinguish live cells from the dead or the apoptotic one. Live cells are stained in a darker blue respect the apoptotic one which are characterized by a brighter blue, while dead cells are stained in pink/red. This analysis showed a different cellular behaviour depending on the samples surfaces characteristics. Untreated samples showed a central area with a high cell density after 24 hours, but, after 72 hours was observed a decreasing number of the living cells. Treated samples indeed, showed an increasing number of cells after 72 hours without any differences between the three samples. On the other hand, Ti/NT 20 samples showed a smaller number of apoptotic cells respect the other studied disks. Furthermore, with a phalloidin staining was possible to observe a more spread cell shape on the samples with smaller nanotubes and a more circular morphology on the disks whit present bigger nanotubes diameters. Finally, was performed a SEM sample surface observation which confirmed what was previously observed with the preceding experiments. It will be interesting for future development, to study various nanotube length fixing an optimum diameter size to maximize the quantity of drug release. In addition it will be useful to study other method to control the drug release trying to decrease the initial burst substituting the alginate use.| File | Dimensione | Formato | |
|---|---|---|---|
|
tesi Valeria Preda.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo tesi
Dimensione
5.92 MB
Formato
Adobe PDF
|
5.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140353