Adipose tissue (AT, commonly named as fat) is a loose connective tissue dedicated to energy storage, organs protection, and contributing to organism homeostasis. AT can be affected by severe pathologies, including lipodystrophies, congenital defects, trauma or resection after pathological cases (e.g., breast tumor removal) that urgently require AT restoration. Current clinical treatments mainly aim at AT volume restoration with no functional regain (i.e., synthetic prosthesis mainly in silicone), or are affected by donor-site morbidity (i.e., tissue flaps) and unpredictable long-term results (i.e., lipofilling). AT engineering offers a unique alternative to target at both tissue volume replacement and functional regain; however, strict requirements must be met to obtain an ideal AT engineering scaffold, including (i) adequate porosity, (ii) biochemical cues to allow cells adhesion, (iii) biomimetic structural properties, (iv) biodegradability, and (v) a promoted vascularization. The aim of this PhD thesis is to produce, by innovative and advanced fabrication technologies, AT scaffolds matching the requirements previously stated, by using a chemically crosslinked gelatin hydrogel investigated here for the first time for AT regeneration. Gelatin, a collagen derivative, was selected for its solubility in water, lower antigenic and immunogenic response compared to collagen, versatility, readily availability, and exposure of cell-binding motives and metalloproteinase target-sites for degradation. The crosslinking reaction, necessary to produce gelatin hydrogels stable at 37 °C (i.e., in vivo applications) and investigated for scaffolds production, is based on a Michael-type addition between gelatin and methylenebisacrylamide, the crosslinker. Gelatin concentration and reaction stoichiometry were varied to tune the hydrogels biomimetics towards different AT depots. All the produced hydrogels were stable in water at 37 °C, thus proving the efficiency of the crosslinking reaction. Different crosslinking degrees were measured by varying either gelatin concentration and/or reaction stoichiometry; the hydrogels showed different weight variations after immersion in physiological-like environment, which in turn influenced their mechanical and rheological properties. The variation of synthesis parameters allowed controlling the properties of the produced hydrogels so to achieve biomimetic properties of different AT depots (i.e., breast and heel pad AT). Moreover, in vitro adhesion, proliferation and adipogenic differentiation of preadipocytes on the gelatin hydrogels were demonstrated. A strategy based on the use of sacrificial hydrogel microbeads and 3D printed structures was subsequently engineered to obtain a porous crosslinked gelatin hydrogel with a controlled vasculature, respectively. Microbeads and 3D printed strands with controlled dimension and geometry were simultaneously embedded in the gelatin hydrogel during its preparation and, at complete gelatin crosslinking, the sacrificial structures were removed by an optimized procedure. The so-produced scaffolds showed ideal properties in terms of porosity (200 – 400 um pore size), mechanical compressive response (E = 3 kPa), and enzymatic degradability. Moreover, the obtained hollow channels allowed fluids flow (i.e., water and blood, tested ex vivo) and cells adhesion to the hollow channels walls, promising aspects for a promoted vascularisation. Finally, in vitro tests proved the ability of the produced scaffolds in supporting human mesenchymal stem cells adhesion, proliferation, and adipogenic differentiation. To achieve a controlled macroscopic shape with a defined porous structure, the crosslinked gelatin hydrogel was also used as ink and 3D printed by an optimized procedure to obtain 3D printed scaffolds for AT engineering. The rheological properties of the gelatin solution were investigated during the crosslinking and a printability time window (i.e., G’ < G”) was identified. The gelatin solution was printed on a substrate by keeping the cartridge temperature at 35 °C, after printing parameters optimization. The printed hydrogels were crosslinked at an optimized temperature and the obtained structures showed patterned geometry and macroscopic shape reproducing the CAD design used for the printing. The printed hydrogels were stable at 37 °C and biomimetic AT mechanical properties were achieved; moreover, printed hydrogels maintained their shape during in vitro cells cultures and sustained preadipocytes in vitro adhesion, proliferation and adipogenic differentiation. In conclusion, this thesis describes, for the first time, the use of a chemically crosslinked hydrogels processed by advanced fabrication technologies useful for AT engineering. This hydrogel is a versatile material that can be fabricated by different techniques that allow producing scaffolds successfully matching AT engineering requirements.
Il tessuto adiposo (TA, comunemente denominato “grasso”) è un tessuto connettivo che svolge il ruolo di riserva di energia, protezione di organi e contribuisce all’omeostasi dell’organismo. Il TA può essere colpito da diverse patologie, tra cui lipodistrofia, difetti congeniti, trauma o rimozione di tessuto a seguito di patologie. I trattamenti clinici ad oggi in uso permettono il ripristino del volume di tessuto mancante ma, generalmente, non permettono un recupero funzionale del tessuto (i.e., protesi sintetiche), oppure sono affetti da scarsità di tessuto da prelevare dal sito donatore (i.e., lembi) o, ancora, hanno risultati incerti nel lungo periodo (i.e., lipofilling). L’ingegneria del TA è un’ottima alternativa ai trattamenti clinici in uso, in quanto questa permetterebbe un ripristino del volume perso e della funzione del tessuto allo stesso tempo; tuttavia, lo scaffold, necessario per la rigenerazione del TA, deve possedere stretti requisiti, tra cui (i) adeguata porosità, (ii) stimoli biochimici che permettano l’adesione cellulare, (iii) proprietà strutturali biomimetiche, (iv) biodegradabilità e (v) vascolarizzazione. Lo scopo di questa tesi di Dottorato è quello di produrre, attraverso tecnologie di fabbricazione avanzata, scaffold per TA che rispettino i requisiti sopra elencati, usando come materiale per la produzione degli scaffold un idrogelo di gelatina reticolato chimicamente, presentato in questa tesi per la prima volta per la rigenerazione del TA. La gelatina, un derivato del collagene, è stata scelta come materiale grazie alla sua solubilità in acqua, minore antigenicità e immunogenicità rispetto al collagene, versatilità, facile reperimento ed esposizione di siti di legame per le cellule e siti di degradazione per le metalloproteinase. La reazione di reticolazione usata in questa tesi, necessaria per produrre idrogeli stabili a 37 °C (i.e., temperatura in vivo), si basa su una reazione di addizione di tipo Michael tra i gruppi amminici della gelatina e l’agente reticolante metilen-bis-acrilammide. Durante la sintesi degli idrogeli, la concentrazione di gelatina e la stechiometria della reazione sono state variate per ottenere idrogeli con proprietà versatili e biomimetiche rispetto a diversi siti di TA. Tutte le formulazioni prodotte sono stabili in acqua a 37 °C, confermando così l’efficienza della reazione di reticolazione. La variazione dei parametri di sintesi ha portato all’ottenimento di diversi gradi di reticolazione; inoltre, le diverse formulazioni di idrogeli hanno mostrato diverso rigonfiamento in ambiente simil-fisiologico, portando di conseguenza all’ottenimento di proprietà meccaniche e reologiche diverse tra le formulazioni. La variazione dei paramenti di sintesi ha così permesso l’ottenimento di idrogeli con proprietà biomimetiche rispetto a diversi tipi di TA (i.e., TA di mammella o tallone). Test in vitro hanno dimostrato la capacità degli idrogeli prodotti di supportare l’adesione, la proliferazione e il differenziamento adipogenico di preadipociti in coltura sugli idrogeli. In seguito, è stata ideata una strategia basata sull’uso di microsfere e strutture ottenute tramite stampa 3D in materiale sacrificale per l’ottenimento di idrogeli porosi e reti vascolari, rispettivamente. Le microsfere e le strutture stampate, con dimensione e geometria definita, sono state inglobate contemporaneamente negli idrogeli durante la loro sintesi e rimossi selettivamente sfruttando una procedura ottimizzata. Gli scaffold ottenuti sono caratterizzati da proprietà ottimali per la rigenerazione del TA, in termini di porosità (i.e., dimensione pori = 200 – 400 m), proprietà meccaniche a compressione (i.e., E = 3 kPa) e possibile degradazione enzimatica. Inoltre, i canali ottenuti a seguito della rimozione delle strutture stampate permettono il flusso di fluidi (i.e., acqua o sangue) e l’adesione cellulare sulle pareti dei canali, entrambi aspetti fondamentali per la vascolarizzazione dello scaffold. Infine, l’adesione di cellule staminali derivate da paziente e il loro differenziamento in adipociti è stato provato attraverso test in vitro. L’idrogelo di gelatina usato in questa tesi è poi stato usato come ink in un processo di stampa 3D ottimizzato ad hoc, al fine di ottenere scaffold con una struttura macroscopica e una microarchitettura controllate, utili per la rigenerazione del TA. Lo studio delle proprietà reologiche dell’idrogelo durante la reticolazione ha permesso di identificare la finestra temporale di stampabilità (i.e., G’<G”) dell’idrogelo. L’idrogelo è stato stampato, a seguito dell’ottimizzazione dei parametri di stampa, caricando la soluzione di gelatina, dopo l’aggiunta di reticolante, nella cartuccia di una stampante mantenuta a 35 °C. Le strutture stampate hanno mostrato buona fedeltà di riproduzione dei modelli CAD disegnati e, dopo la stampa, sono state reticolate mantenendole ad una temperatura ottimizzata. A seguito della reticolazione, le strutture si sono dimostrate stabili a 37 °C e con caratteristiche meccaniche biomimetiche per il TA; inoltre, la morfologia delle strutture stampate è mantenuta durante i test in vitro, che hanno dimostrato inoltre la capacità degli scaffold di supportare l’adesione e proliferazione di preadipociti e il loro differenziamento in adipociti. In conclusione, questa tesi descrive, per la prima volta, l’uso di un idrogelo di gelatina reticolata chimicamente processato tramite tecniche di fabbricazione avanzata per l’ottenimento di scaffold per il TA. Questo idrogelo è un materiale versatile, che può essere processato attraverso diverse tecnologie, per ottenere scaffold con proprietà ottimali per la rigenerazione del TA.
Design and fabrication of biomimetic gelatin hydrogel structures for adipose tissue engineering
CONTESSI NEGRINI, NICOLA
Abstract
Adipose tissue (AT, commonly named as fat) is a loose connective tissue dedicated to energy storage, organs protection, and contributing to organism homeostasis. AT can be affected by severe pathologies, including lipodystrophies, congenital defects, trauma or resection after pathological cases (e.g., breast tumor removal) that urgently require AT restoration. Current clinical treatments mainly aim at AT volume restoration with no functional regain (i.e., synthetic prosthesis mainly in silicone), or are affected by donor-site morbidity (i.e., tissue flaps) and unpredictable long-term results (i.e., lipofilling). AT engineering offers a unique alternative to target at both tissue volume replacement and functional regain; however, strict requirements must be met to obtain an ideal AT engineering scaffold, including (i) adequate porosity, (ii) biochemical cues to allow cells adhesion, (iii) biomimetic structural properties, (iv) biodegradability, and (v) a promoted vascularization. The aim of this PhD thesis is to produce, by innovative and advanced fabrication technologies, AT scaffolds matching the requirements previously stated, by using a chemically crosslinked gelatin hydrogel investigated here for the first time for AT regeneration. Gelatin, a collagen derivative, was selected for its solubility in water, lower antigenic and immunogenic response compared to collagen, versatility, readily availability, and exposure of cell-binding motives and metalloproteinase target-sites for degradation. The crosslinking reaction, necessary to produce gelatin hydrogels stable at 37 °C (i.e., in vivo applications) and investigated for scaffolds production, is based on a Michael-type addition between gelatin and methylenebisacrylamide, the crosslinker. Gelatin concentration and reaction stoichiometry were varied to tune the hydrogels biomimetics towards different AT depots. All the produced hydrogels were stable in water at 37 °C, thus proving the efficiency of the crosslinking reaction. Different crosslinking degrees were measured by varying either gelatin concentration and/or reaction stoichiometry; the hydrogels showed different weight variations after immersion in physiological-like environment, which in turn influenced their mechanical and rheological properties. The variation of synthesis parameters allowed controlling the properties of the produced hydrogels so to achieve biomimetic properties of different AT depots (i.e., breast and heel pad AT). Moreover, in vitro adhesion, proliferation and adipogenic differentiation of preadipocytes on the gelatin hydrogels were demonstrated. A strategy based on the use of sacrificial hydrogel microbeads and 3D printed structures was subsequently engineered to obtain a porous crosslinked gelatin hydrogel with a controlled vasculature, respectively. Microbeads and 3D printed strands with controlled dimension and geometry were simultaneously embedded in the gelatin hydrogel during its preparation and, at complete gelatin crosslinking, the sacrificial structures were removed by an optimized procedure. The so-produced scaffolds showed ideal properties in terms of porosity (200 – 400 um pore size), mechanical compressive response (E = 3 kPa), and enzymatic degradability. Moreover, the obtained hollow channels allowed fluids flow (i.e., water and blood, tested ex vivo) and cells adhesion to the hollow channels walls, promising aspects for a promoted vascularisation. Finally, in vitro tests proved the ability of the produced scaffolds in supporting human mesenchymal stem cells adhesion, proliferation, and adipogenic differentiation. To achieve a controlled macroscopic shape with a defined porous structure, the crosslinked gelatin hydrogel was also used as ink and 3D printed by an optimized procedure to obtain 3D printed scaffolds for AT engineering. The rheological properties of the gelatin solution were investigated during the crosslinking and a printability time window (i.e., G’ < G”) was identified. The gelatin solution was printed on a substrate by keeping the cartridge temperature at 35 °C, after printing parameters optimization. The printed hydrogels were crosslinked at an optimized temperature and the obtained structures showed patterned geometry and macroscopic shape reproducing the CAD design used for the printing. The printed hydrogels were stable at 37 °C and biomimetic AT mechanical properties were achieved; moreover, printed hydrogels maintained their shape during in vitro cells cultures and sustained preadipocytes in vitro adhesion, proliferation and adipogenic differentiation. In conclusion, this thesis describes, for the first time, the use of a chemically crosslinked hydrogels processed by advanced fabrication technologies useful for AT engineering. This hydrogel is a versatile material that can be fabricated by different techniques that allow producing scaffolds successfully matching AT engineering requirements.File | Dimensione | Formato | |
---|---|---|---|
2018_05_PhD_ContessiNegrini.pdf
non accessibile
Descrizione: 2018_05_PhD_Contessi Negrini
Dimensione
93.32 MB
Formato
Adobe PDF
|
93.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/140381