In the last few years, small bodies of the Solar System, such as asteroids and comets, are drawing attention because of their scientific relevance, their precious materials and the danger they might represent for the preservation of mankind. One of the main issues of reaching a small object is the landing phase and the probe ability of granting a tight grip to safely operate in microgravity. The aim of this work is the investigation of two anchoring geometries using the Discrete Element Method, implemented in a open source software called Yade. A standard geometry, derived from Philae's harpoon and which makes use of four fins, is compared with an innovative solution, which employs an inflatable airbag at its tip. Two kinds of simulation are taken into account: static analysis in which the harpoon is inserted into the soil and pulled with a certain force, and dynamic analysis where the anchor is first shot inside the soil before retraction. Tests with different gravity accelerations and soil characteristics are performed for both the harpoons. Simulations show how Philae's harpoon cannot grant sufficient force against the pulling action in the modeled gravel type soil, both in microgravity and Earth's gravity. On the other hand the inflatable harpoon is able to withstand the retraction force in Earth's gravity but not in microgravity, considering equal depths. The pressure needed to expand the airbag is very high in Earth's gravity while it can be handled in a microgravity environment. Finally, the dynamic analyses demonstrate how in microgravity the reached depth by the anchor is expected to be much bigger than the one in Earth's gravity.
Negli ultimi anni asteroidi e comete sono stati oggetto di grande attenzione per la loro rilevanza scientifica e al pericolo che rappresentano in caso di collisione con la Terra. Una delle problematiche più importanti nel raggiungere piccoli oggetti del Sistema Solare è l'atterraggio e l'abilità della sonda nel fornire la presa necessaria per operare sulla superficie in condizioni di microgravità. Lo scopo di questo lavoro di tesi è lo studio di due differenti sistemi di ancoraggio utilizzando il metodo degli elementi discreti (DEM) implementato nel software Yade. Le prestazioni dell'arpione del lander Philae sono comparate con una soluzione innovativa che utilizza un airbag gonfiabile, posizionato sulla punta dell'arpione. Due tipi di simulazioni vengono considerate: statiche, in cui l'ancora è inserita nel suolo e tirata verso l'alto con una forza ben definita, e le simulazioni dinamiche in cui l'arpione è sparato nel terreno prima di essere ritratto. Vengono considerati esperimenti sia a gravità terrestre che in microgravità, variando anche alcune proprietà del suolo. Le simulazioni hanno dimostrato come l'arpione di Philae non riesce ad opporre abbastanza resistenza alla forza nel suolo considerato di tipo ghiaioso, sia in microgravità che in condizioni terrestri. Invece il meccanismo gonfiabile resiste alla forza tirante nelle simulazioni a gravità terrestre ma non in microgravità. Inoltre le simulazioni dinamiche mostrano come, in microgravità, con un terreno più soffice, l'arpione raggiunge profondità molto maggiori di quelle terrestri.
Modeling and analysis of anchoring solutions for landing in microgravity
BALZAROTTI, ALESSANDRO
2016/2017
Abstract
In the last few years, small bodies of the Solar System, such as asteroids and comets, are drawing attention because of their scientific relevance, their precious materials and the danger they might represent for the preservation of mankind. One of the main issues of reaching a small object is the landing phase and the probe ability of granting a tight grip to safely operate in microgravity. The aim of this work is the investigation of two anchoring geometries using the Discrete Element Method, implemented in a open source software called Yade. A standard geometry, derived from Philae's harpoon and which makes use of four fins, is compared with an innovative solution, which employs an inflatable airbag at its tip. Two kinds of simulation are taken into account: static analysis in which the harpoon is inserted into the soil and pulled with a certain force, and dynamic analysis where the anchor is first shot inside the soil before retraction. Tests with different gravity accelerations and soil characteristics are performed for both the harpoons. Simulations show how Philae's harpoon cannot grant sufficient force against the pulling action in the modeled gravel type soil, both in microgravity and Earth's gravity. On the other hand the inflatable harpoon is able to withstand the retraction force in Earth's gravity but not in microgravity, considering equal depths. The pressure needed to expand the airbag is very high in Earth's gravity while it can be handled in a microgravity environment. Finally, the dynamic analyses demonstrate how in microgravity the reached depth by the anchor is expected to be much bigger than the one in Earth's gravity.File | Dimensione | Formato | |
---|---|---|---|
ThesisAnchor.pdf
solo utenti autorizzati dal 06/04/2019
Dimensione
100.02 MB
Formato
Adobe PDF
|
100.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141090