CERN, the European Organization for Nuclear Research, is the world’s largest high energy physics research facility. Based in Geneva, Switzerland, it comprises several accelerators and experiments, ultimately providing beam to the well know Large Hadron Collider (LHC). In the LHC, accelerated particles are made to collide. From these collisions, scientists from all over the world study the essential constituents of matter in order to search for the fundamental structure of the universe. In order to optimally achieve the desired particle trajectory and speed, thousands of magnets (both normal and superconducting) are placed alongside the accelerator complex. The power needs of these magnets are adequately met by power converters. Due to the high precision specification of the magnet powering, each converter contains pioneering electronics control systems that provide, amongst others, function generation, current regulation and state control. A failure on the power converters con-trol would directly affect the machine’s optimal performance. Because of the high volume of electronic boards involved as well as the criticality of the control application, it is of outmost importance to fulfil design specification of all electronic circuitry before deployment in the accelerator. This task lies on the shoulders of the Control Converter Electronics section, Electric Power Converter group (CCE-EPC). To tackle this need, electronic testing platforms are developed. Diverse platforms have been developed over the years. From man-ual approaches to in-house automated tools, the introduced testing solutions have been continuously evolving. The work presented in this thesis culminates the last iteration in the testing development process. It proposes a platform that combines cutting edge software testing tools with a robust industrially spread hardware infrastructure. The proposed solution is an automated test platform based on a mechanical fixture with a dedicated interchangeable bed-of-nails cassette specially designed for a board to test. This robust industrial approach responds to the high volume of boards to test. Currently, 45 types of boards with an average yearly production batch of half a thousand units is being handled. On the other hand, the testing tools employed are founded on a three-pillar approach. Firstly, for attending digital features of the board, JTAG Boundary Scan is employed. Secondly, National Instruments PXI is used for testing the analogue functionalities of the board. With these two tools, a wider range of test coverage and minimum test execution time is achieved compared to previous approaches. Lastly, National Instruments TestStand is used for creating an intuitive user interface that comprises all the individual test procedures and troubleshooting guidelines. The thesis presents a standard testing methodology to follow by the designer in order to achieve a valid tester using the conceived platform. The methodology defines the foundation for future tester developments. It comprises four main steps supported by a tangible deliverable system to define its progress and success. Additionally a series of developed HW/SW common tools reusable between tester projects are presented. As means of practical verification, a fully operational tester for the StateControl board using the devised methodology is included. The board is part of the RegFGC3 control system, the last generation of power converter controllers deployed in the accelera-tor complex. Thanks to the work developed in the thesis, the tester developed for the StateControl provides a solution based on the devised platform that improves testing execution time by 95% and maintains the same level of test coverage compared to the previous testing ap-proach. Furthermore, the yearly production need of 560 tested boards was accomplished in a single month. More importantly, five current projects are following the testing methodology developed. The DSP Regulation and Analogue Interlock boards of the RegFGC3 control system and the Main, Network and ANA103 boards of the FGC3 control scheme. Following production estimations, if the tester projects are successful, they will be responsible for testing more than 1200 boards in total by the end of 2018.
Il CERN, Organizzazione Europea per la Ricerca Nucleare, è il centro di ricerca per la fisica delle alte energie più grande del mondo. Situato a Ginevra, in Svizzera, comprende diversi acceleratori ed esperimenti, quali il ben noto Large Hadron Collider (LHC). Nell’ LHC vengono fatte collidere particelle accelerate. Da queste collisioni scienziati da ogni parte del mondo studiano i componenti essenziali della materia per far luce sulla struttura fondamentale dell’Universo. Per conferire in modo ottimale la traiettoria e la velocità desiderata alle particelle, migliaia di magneti (sia normali che superconduttori) sono posti lungo il complesso dell’acceleratore. La potenza richiesta da questi magneti è adeguatamente fornita da convertitori di potenza. Per far fronte alle specifiche di elevata precisione sulla potenza dei magneti, ogni convertitore contiene un sistema elettronico di controllo pioneristico che fornisce, tra l’altro, la funzione di generazione di corrente e la regolazione e il controllo di stato. Un guasto al sistema di controllo dei convertitori di potenza influirebbe direttamente sulle performance ottimali della macchina. A causa del grande volume di schede elettroniche impiegate, così come la criticità dell’applicazione di controllo, è di assoluta importanza soddisfare le specifiche di progetto di tutti i circuiti elettronici prima di procedere all’ implementazione nell’acceleratore. Questo compito spetta alla sezione Control Converter Electronics, afferente al gruppo Electric Power Converter (CCE-EPC). Per affrontare questa esigenza, diverse piattaforme sono state sviluppate col passare degli anni. Dall’approccio manuale a strumenti automatici in-house, le soluzioni sperimentali introdotte sono in continua evoluzione. Il presente lavoro di tesi culmina nell’ultima iterazione di questo processo di sviluppo sperimentale, proponendo una piattaforma che unisce strumenti software all’avanguardia con una robusta infrastruttura hardware diffusa a livello industriale. La soluzione proposta è un sistema automatizzato di test basato su un dispositivo meccanico con una cassetta a letto d’aghi intercambiabile appositamente progettata per un particolare circuito stampato. Questo robusto approccio industriale risponde ad un elevato volume di circuiti stampati. Al momento vengono trattati 45 tipi di schede con una produzione annua media di un lotto da 500 unità. D’altro canto, gli strumenti di test impiegati sono basati su un approccio fondato su tre pilastri. Innanzitutto, viene impiegato il JTAG Boundary Scan per testare le funzioni digitali della scheda. In secondo luogo viene usato il National Instruments PXI per testare le sue funzionalità analogiche. Con questi due strumenti è possibile ottenere una più ampia gamma di test e un tempo di esecuzione minore rispetto ad approcci precedenti. Infine, si ricorre all’uso del National Instruments TestStand per creare un’interfaccia utente intuitiva che comprenda tutte le singole procedure di prova e le linee guida per la risoluzione dei problemi. Il lavoro di tesi presenta una procedura di prova standard che il progettista deve seguire per ottenere un tester valido utilizzando la piattaforma sviluppata. Essa consta di quattro fasi principali supportate da un sistema per definire il suo avanzamento e termine. Sono presentati inoltre una serie di strumenti HW/SW comuni riutilizzabili tra progetti sperimentali. Ai fini di una verifica pratica, una piattaforma di test pienamente operativa, la scheda StateControl, è stata inclusa nell’impiego della metodologia ideata. La scheda è parte del sistema di controllo RegFGC3, l’ultima generazione dei controllori a convertitori di potenza impiegati nel complesso dell’acceleratore. Grazie al lavoro sviluppato in questa tesi, il tester sviluppato per la StateControl fornisce una soluzione basata sulla piattaforma elaborata che migliora il tempo di esecuzione dei test del 95% e mantiene lo stesso livello di copertura sperimentale degli altri approcci precedenti. Inoltre, la domanda annua di 560 schede da testare è stata soddisfatta in un solo mese. Cosa più importante, cinque progetti seguono al momento la procedura di test sviluppata: le schede DSP Regulation e l’Analogue Interlock del sistema di controllo RegFGC3, le schede Main, Network e ANA103 del sistema di controllo FGC3. Secondo stime di produzione, se le campagne di test avranno successo, il sistema svilupatto sarà responsabile del test di 1200 schede in totale entro la fine del 2018.
Standardization of industrial automated test equipment for electric power converters control at CERN
LANZA, DIEGO
2016/2017
Abstract
CERN, the European Organization for Nuclear Research, is the world’s largest high energy physics research facility. Based in Geneva, Switzerland, it comprises several accelerators and experiments, ultimately providing beam to the well know Large Hadron Collider (LHC). In the LHC, accelerated particles are made to collide. From these collisions, scientists from all over the world study the essential constituents of matter in order to search for the fundamental structure of the universe. In order to optimally achieve the desired particle trajectory and speed, thousands of magnets (both normal and superconducting) are placed alongside the accelerator complex. The power needs of these magnets are adequately met by power converters. Due to the high precision specification of the magnet powering, each converter contains pioneering electronics control systems that provide, amongst others, function generation, current regulation and state control. A failure on the power converters con-trol would directly affect the machine’s optimal performance. Because of the high volume of electronic boards involved as well as the criticality of the control application, it is of outmost importance to fulfil design specification of all electronic circuitry before deployment in the accelerator. This task lies on the shoulders of the Control Converter Electronics section, Electric Power Converter group (CCE-EPC). To tackle this need, electronic testing platforms are developed. Diverse platforms have been developed over the years. From man-ual approaches to in-house automated tools, the introduced testing solutions have been continuously evolving. The work presented in this thesis culminates the last iteration in the testing development process. It proposes a platform that combines cutting edge software testing tools with a robust industrially spread hardware infrastructure. The proposed solution is an automated test platform based on a mechanical fixture with a dedicated interchangeable bed-of-nails cassette specially designed for a board to test. This robust industrial approach responds to the high volume of boards to test. Currently, 45 types of boards with an average yearly production batch of half a thousand units is being handled. On the other hand, the testing tools employed are founded on a three-pillar approach. Firstly, for attending digital features of the board, JTAG Boundary Scan is employed. Secondly, National Instruments PXI is used for testing the analogue functionalities of the board. With these two tools, a wider range of test coverage and minimum test execution time is achieved compared to previous approaches. Lastly, National Instruments TestStand is used for creating an intuitive user interface that comprises all the individual test procedures and troubleshooting guidelines. The thesis presents a standard testing methodology to follow by the designer in order to achieve a valid tester using the conceived platform. The methodology defines the foundation for future tester developments. It comprises four main steps supported by a tangible deliverable system to define its progress and success. Additionally a series of developed HW/SW common tools reusable between tester projects are presented. As means of practical verification, a fully operational tester for the StateControl board using the devised methodology is included. The board is part of the RegFGC3 control system, the last generation of power converter controllers deployed in the accelera-tor complex. Thanks to the work developed in the thesis, the tester developed for the StateControl provides a solution based on the devised platform that improves testing execution time by 95% and maintains the same level of test coverage compared to the previous testing ap-proach. Furthermore, the yearly production need of 560 tested boards was accomplished in a single month. More importantly, five current projects are following the testing methodology developed. The DSP Regulation and Analogue Interlock boards of the RegFGC3 control system and the Main, Network and ANA103 boards of the FGC3 control scheme. Following production estimations, if the tester projects are successful, they will be responsible for testing more than 1200 boards in total by the end of 2018.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Lanza.pdf
accessibile in internet per tutti
Descrizione: Thesis Text
Dimensione
7.33 MB
Formato
Adobe PDF
|
7.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141202