In the framework of sustainable development and circular economy, Composting Heat Recovery Systems (CHRSs) are an interesting and quite unknown technique. Among them, the Termocompost technology embodies a low-tech option for integrated production of high quality compost and hot water at 60°C from green waste. Since a systematic scientific investigation was not performed yet, the purpose of this work is building a simplified but physically consistent model of the phenomena occurring in the Termocompost, to establish a reliable base for further scientific research. An evaluation of the kinetics of the composting reaction, and of the convective heat transfer coefficient on the outer surface of pipes in the heap was performed, by implementing two dynamic energy balances in Matlab, and fitting the outcomes with experimental data. Finally, a model of a full Termocompost system was proposed, representing the most important phenomena ongoing during the composting process, then, a FEM numerical simulation by means of Comsol Multiphysics simulator was performed. Globally, the outcomes of the simulation are not quantitatively reliable. The dynamics of the simulation is very fast with respect to the reality because the kinetics assumed was evaluated basing on a forced aeration setup, furthermore, it was not dependent on oxygen concentration. The effective permeability to air of the heap is probably some order of magnitude lower than what set in the simulation, therefore, the convective transport phenomena are less significant. Despite this, from the qualitative standpoint, the simulation consistently described heat and mass transfer phenomena characterizing the composting process. Future research will focus on refining the model to proceed with the scientific assessement of this technology.
Nel panorama dello sviluppo sostenibile e della Circular Economy, una tecnica interessante e poco conosciuta consiste nei sistemi di recupero termico dal processo di compostaggio (CHRS). Tra essi, il Termocompost costituisce una opzione a basso livello tecnologico, che, partendo da scarti verdi, produce in modo integrato compost di alta qualità e acqua calda a 60°C circa. Poichè un’investigazione scientifica sistematica non è ancora stata compiuta, lo scopo di questo lavoro è elaborare un modello semplice ma consistente di un impianto Termocompost, e costituire una base affidabile per ulteriore ricerca scientifica. Inizialmente, è stata eseguita una valutazione della cinetica del compostaggio e del coefficiente di scambio termico convettivo sulla superficie esterna dei tubi immersi nel cumulo, implementando due bilanci di energia dinamici in Matlab, e interpolando le simulazioni con dati sperimentali. Infine, è stato elaborato il modello di un impianto Termocompost completo, rappresentando i principali processi fisici e chimici che accadono durante il compostaggio, quindi, è stata eseguita una simulazione numerica FEM per mezzo del simulatore Comsol Multiphysics. In generale, i risultati della simulazione non sono quantitativamente affidabili. La dinamica della simulazione è molto accelerata rispetto alla realtà perché la cinetica assunta fa riferimento a una condizione di compostaggio con aerazione forzata, e per di più, non dipende dalla concentrazione di ossigeno. Inoltre, la effettiva permeabilità all’aria del cumulo è probabilmente alcuni ordini di grandezza minore rispetto a quanto impostato nella simulazione, quindi, i fenomeni di trasporto convettivo nel cumulo sono in realtà molto meno significativi. Nonostante ciò, dal punto di vista qualitativo, il modello descrive in modo consistente i bilanci di massa ed energia che caratterizzano il compostaggio. Lavoro futuro sarà raffinare il modello e procedere con la valutazione scientifica di questa tecnologia.
Modelling of a technology for heat recovery from the composting process
ZAMPIERI, PAOLO
2016/2017
Abstract
In the framework of sustainable development and circular economy, Composting Heat Recovery Systems (CHRSs) are an interesting and quite unknown technique. Among them, the Termocompost technology embodies a low-tech option for integrated production of high quality compost and hot water at 60°C from green waste. Since a systematic scientific investigation was not performed yet, the purpose of this work is building a simplified but physically consistent model of the phenomena occurring in the Termocompost, to establish a reliable base for further scientific research. An evaluation of the kinetics of the composting reaction, and of the convective heat transfer coefficient on the outer surface of pipes in the heap was performed, by implementing two dynamic energy balances in Matlab, and fitting the outcomes with experimental data. Finally, a model of a full Termocompost system was proposed, representing the most important phenomena ongoing during the composting process, then, a FEM numerical simulation by means of Comsol Multiphysics simulator was performed. Globally, the outcomes of the simulation are not quantitatively reliable. The dynamics of the simulation is very fast with respect to the reality because the kinetics assumed was evaluated basing on a forced aeration setup, furthermore, it was not dependent on oxygen concentration. The effective permeability to air of the heap is probably some order of magnitude lower than what set in the simulation, therefore, the convective transport phenomena are less significant. Despite this, from the qualitative standpoint, the simulation consistently described heat and mass transfer phenomena characterizing the composting process. Future research will focus on refining the model to proceed with the scientific assessement of this technology.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Zampieri Paolo.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
|
Tesi Zampieri Paolo.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141241