The progressive improvement of additive manufacturing (AM) techniques enables the production of geometrically complex and lightweight parts, which explains the incredibly fast growth of AM for aerospace applications. Despite the disruptive benefits of AM, the full potential of the technology is today far from being reached. The necessity of complying with very strict reliability requirements is hindering most of the safety-critical and structural applications because of the large scatter and low reproducibility associated to AM, especially in terms of fatigue strength. In these regard, the initial part of this research activity is devoted to evaluating the fatigue behaviour of metal alloys produced by AM, focusing in particular on the sensitivity to defects and inhomogeneities of alloys widely used in the aerospace sector, i.e., AlSi10Mg and Ti-6Al-4V. The analysis shows that fatigue properties and key variables do not differ with respect to those of traditional manufacturing processes. Furthermore, it is evidenced that manufacturing defects are the main variable responsible for the experimental scatter, and that defect-tolerant design concepts can be adopted for the assessment of AM components. One of the most suitable techniques for detecting defects in the complex geometries achievable by AM is micro-computed tomography (mu-CT). A simple and robust method to analyse the CT data is thus investigated. On this base, the critical defect size for a volume of material can be determined applying statistics of extremes and is the input for damage-tolerant (DT) assessment. These concepts are then applied and verified to the AlSi10Mg alloy. The material has been manufactured by Selective Laser Melting (SLM) according to three processes, and extensively characterised in terms of static, fatigue and fatigue crack growth (FCG) properties. Microstructural investigations, CT and fractographic analyses have been conducted as well. The data clearly show that manufacturing defects are the main variable responsible for the scattered fatigue resistance of the specimens. The investigation demonstrates that a combination of defect-tolerant design with well-established and newly proposed fracture mechanics methods is the key to expressing the relationship between fatigue strength and material quality and to support the application of AM to safety-critical components and their qualification. In fact, both the trend and scatter of the fatigue data in a large range of loading conditions can be robustly assessed by elastic-plastic FCG simulations based on the analysis of CT measurements. All the results obtained lead to the final topic of the research activity, which addresses the fatigue strength of complex AM parts. The AM community and the main aerospace industries are starting to agree that DT approaches are necessary and that probabilistic methods are best-suited to obtain reliable, but not over-constrained, assessments. In this regard, the research performed has set the base for the concept and development of Pro-FACE, a fully-probabilistic software that aims to robustly assess the fatigue strength and critical locations of complex components in the presence of defects. The final part of this document summarises the concept at the base of the tool, its implementation, and a first validation by means of state-of-the art simulations. Pro-FACE is finally used to assess the fatigue resistance of two parts: a space component made of AlSi10Mg and an aeronautic part made of Ti-6Al-4V. The analytic formulation makes this tool ideal to evaluate very low failure probabilities with limited time and effort, which can be valuable information to significantly improve part design and qualification and to define defect acceptability criteria.
Il miglioramento progressivo della tecnologia additiva (AM) ha reso possibile la produzione di componenti leggeri e geometricamente complessi. Ciò giustifica la crescita estremamente rapida dell’uso di tecnologia AM per applicazioni aerospaziali. Nonostante i dirompenti benefici introdotti dall’AM, il potenziale di questa tecnologia non è tuttora sfruttato in modo completo. La necessità di ottemperare a requisiti di affidabilità molto stringenti impedisce la maggior parte delle applicazioni strutturali e critiche per la sicurezza. Il motivo di ciò si riconduce all’elevata dispersione ed alla scarsa riproducibilità sempre legate all’AM, specialmente per quanto concerne la resistenza a fatica. Su questa base, la parte iniziale dell’attività di ricerca è stata dedicata ad analizzare il comportamento a fatica di leghe metalliche prodotto tramite AM, concentrandosi in particolare sulla sensitività a difetti e disomogeneità di leghe largamente utilizzate nel settore aerospaziale, come AlSi10Mg e Ti-6Al-4V. L’analisi mostra che le proprietà a fatica e le variabili chiave non sono differenti rispetto a quelle relative a processi di manifattura tradizionale. Si evidenzia inoltre che i difetti dovuti al processo sono la principale variabile responsabile della dispersione sperimentale e che è possibile utilizzare i concetti di progettazione tollerante ai difetti per verificare i componenti ottenuti per AM. La micro-tomografia computerizzata (mu-CT) è una delle tecniche più idonee per la rilevazione di difetti in geometrie complesse come quelle ottenibili tramite AM. È stato quindi indagato un metodo semplice e robusto per analizzare i dati da CT. Sulla base di questo, la dimensione critica del difetto per un dato volume di materiale può essere determinata tramite applicazione della statistica degli eventi estremi ed è la base per effettuare verifiche tolleranti i difetti. Questi concetti sono stati applicati e verificati sulla lega di alluminio AlSi10Mg. Il materiale è stato prodotto tramite Selective Laser Melting (SLM) sulla base di tre processi, caratterizzando approfonditamente le sue proprietà statiche, di fatica e di resistenza alla propagazione di cricche (FCG). Sono inoltre state effettuate analisi microstrutturali, tomografiche e frattografiche. I dati mostrano chiaramente che i difetti di processo sono la principale variabile responsabile della dispersa resistenza a fatica dei provini. Le indagini mostrano che una combinazione di progettazione tollerante i difetti con metodi di meccanica della frattura affermati ed innovativi è la chiave per esprimere la relazione tra resistenza a fatica e qualità del materiale, supportando così l’uso dell’AM per applicazioni ad alto rischio e per la qualifica dei componenti. È infatti possibile descrivere in maniera robusta l’andamento e la dispersione dei dati di fatica in un’ampia gamma di condizioni di carico sulla base dell’analisi di misure da CT. Tutti i risultati ottenuti hanno condotto al tema finale dell’attività di ricerca, che si rivolge alla resistenza a fatica di componenti AM di forma complessa. La comunità AM e le principali industrie aerospaziali cominciano a concordare sulla necessità di utilizzare approcci DT e sul fatto che i metodi probabilistici sono i più adeguati ad ottenere valutazioni affidabili e non eccessivamente conservative. Sotto questo punto di vista, la ricerca svolta ha posto le basi per l’impostazione e lo sviluppo di Pro-FACE, un software completamente probabilistico che mira a valutare in maniera robusta la resistenza a fatica e le regioni critiche di componenti complessi in presenza di difetti. La parte finale di questo documento riassume i concetti alla base del modello, la sua implementazione e la validazione preliminare sulla base di simulazioni all’avanguardia. Pro-FACE è stato infine utilizzato per valutare la resistenza a fatica di due componenti: un supporto per applicazione spaziale prodotto in AlSi10Mg ed un componente aeronautico in Ti-6Al-4V. La formulazione analitica rende il modello ideale per valutare probabilità di cedimento molto basse limitando sforzo e tempo necessari, fornendo informazioni preziose per migliorare la progettazione e la qualifica in maniera significativa e per definire condizioni di accettabilità dei difetti.
Probabilistic fatigue life assessment of additive manufacturing components through computational models
ROMANO, SIMONE
Abstract
The progressive improvement of additive manufacturing (AM) techniques enables the production of geometrically complex and lightweight parts, which explains the incredibly fast growth of AM for aerospace applications. Despite the disruptive benefits of AM, the full potential of the technology is today far from being reached. The necessity of complying with very strict reliability requirements is hindering most of the safety-critical and structural applications because of the large scatter and low reproducibility associated to AM, especially in terms of fatigue strength. In these regard, the initial part of this research activity is devoted to evaluating the fatigue behaviour of metal alloys produced by AM, focusing in particular on the sensitivity to defects and inhomogeneities of alloys widely used in the aerospace sector, i.e., AlSi10Mg and Ti-6Al-4V. The analysis shows that fatigue properties and key variables do not differ with respect to those of traditional manufacturing processes. Furthermore, it is evidenced that manufacturing defects are the main variable responsible for the experimental scatter, and that defect-tolerant design concepts can be adopted for the assessment of AM components. One of the most suitable techniques for detecting defects in the complex geometries achievable by AM is micro-computed tomography (mu-CT). A simple and robust method to analyse the CT data is thus investigated. On this base, the critical defect size for a volume of material can be determined applying statistics of extremes and is the input for damage-tolerant (DT) assessment. These concepts are then applied and verified to the AlSi10Mg alloy. The material has been manufactured by Selective Laser Melting (SLM) according to three processes, and extensively characterised in terms of static, fatigue and fatigue crack growth (FCG) properties. Microstructural investigations, CT and fractographic analyses have been conducted as well. The data clearly show that manufacturing defects are the main variable responsible for the scattered fatigue resistance of the specimens. The investigation demonstrates that a combination of defect-tolerant design with well-established and newly proposed fracture mechanics methods is the key to expressing the relationship between fatigue strength and material quality and to support the application of AM to safety-critical components and their qualification. In fact, both the trend and scatter of the fatigue data in a large range of loading conditions can be robustly assessed by elastic-plastic FCG simulations based on the analysis of CT measurements. All the results obtained lead to the final topic of the research activity, which addresses the fatigue strength of complex AM parts. The AM community and the main aerospace industries are starting to agree that DT approaches are necessary and that probabilistic methods are best-suited to obtain reliable, but not over-constrained, assessments. In this regard, the research performed has set the base for the concept and development of Pro-FACE, a fully-probabilistic software that aims to robustly assess the fatigue strength and critical locations of complex components in the presence of defects. The final part of this document summarises the concept at the base of the tool, its implementation, and a first validation by means of state-of-the art simulations. Pro-FACE is finally used to assess the fatigue resistance of two parts: a space component made of AlSi10Mg and an aeronautic part made of Ti-6Al-4V. The analytic formulation makes this tool ideal to evaluate very low failure probabilities with limited time and effort, which can be valuable information to significantly improve part design and qualification and to define defect acceptability criteria.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Romano.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
18.3 MB
Formato
Adobe PDF
|
18.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141263