The aim of the present work is to outline a numerical procedure for the simulation of the thermo-mechanical behaviour of a titanium alloy-unidirectional carbon fiber reinforced polymer hybrid material obtained with a co-bonding process. The embedding of optical sensors inside one of the composite blocks allows to monitor the production process, highlighting an unexpected nonlinear behaviour of the strains with respect to the temperature during the cooling phase (associated with most relevant residual stresses building up): such phenomenon has been attributed to a significant viscous behaviour of adhesive at moderately high temperature and has been investigated by means of numerical models. In addition, as common practice for hybrid materials, the characterization of the hybrid interfaces has been performed concentrating on mode I related properties. Conventional and innovative modelling techniques are proposed with the aim to provide an estimation of both thermal residual stress and of mechanical response in fracture tests (DCB) in multi-step analyses: the former, able to correctly reproduce the mechanical behaviour but not the residual stresses building up (because of overestimations associated with the linear cooling assumptions), has been replaced by innovative ones based on the solid explicit modelling of adhesive layers, endowed with a user-defined material behaviour. After the validation of the new procedure with constant adhesive properties, a more detailed modelling (including pressure application and friction effects) with temperature-dependent mechanical properties is proposed. Results confirm that it is only below the adhesive solidification temperature that significant strain and residual stresses build up, thus supporting the hypotheses of significant viscous behaviour of the adhesive at moderately high temperature. The results show that the interposition of an adhesive layer at the interfaces may be exploited as a simple residual stress relief solution that, together with the quantifiable enhanced interfacial behaviour, may be appealing for some applications due to a good gain-over-weight ratio.
Obiettivo del presente lavoro è determinare una procedura per la simulazione del comportamento termo-meccanico di laminati ibridi titanio-composito (fibra di carbonio unidirezionale) ottenuti mediante “co-bonding”. L’inclusione di sensori ottici entro uno dei blocchi di composito ha permesso di monitorare il processo produttivo, evidenziando un comportamento non lineare delle deformazioni rispetto alla temperatura durante la fase di raffreddamento (in cui si generano i maggiori contributi di sforzo residuo): ciò è stato attribuito a fenomeni viscosi dell’adesivo ad alte temperature, fenomeni che sono stati studiati con modelli numerici. Come da prassi per i materiali ibridi, inoltre, è stata effettuata anche la caratterizzazione delle interfacce, concentrandosi sulle proprietà relative al modo I di propagazione. Vengono proposte tecniche di modellazione convenzionali e innovative con lo scopo di fornire sia una stima degli sforzi residui sia del comportamento meccanico nei test di frattura (DCB) mediante analisi multi-step. Le prime, in grado di riprodurre correttamente il comportamento meccanico ma non quello termico (che, a causa delle ipotesi di raffreddamento lineare risulta essere sovrastimato), sono state affiancate da tecniche innovative basate sulla modellazione esplicita degli strati di adesivo con una legge di materiale definita dall’utente. La validazione della nuova procedura con proprietà materiale costanti ha consentito di sviluppare un modello più completo e comprensivo di una legge materiale dipendente dalla temperatura e degli effetti dell’applicazione della pressione e dell’attrito. I risultati hanno confermato che la parte significativa di sforzi e deformazioni residue si genera al di sotto della temperatura di solidificazione dell’adesivo a causa del suo comportamento viscoso a temperature moderatamente elevate. I risultati mostrano, in definitiva, che l’interposizione di strati di adesivo in corrispondenza delle interfacce ibride può essere sfruttato come una soluzione semplice per alleviare gli sforzi residui, ottenendo al tempo stesso un significativo incremento delle proprietà delle interfacce e un bassissimo aggravio di peso.
Experimental and numerical study of manufacturing and fracture of hybrid composite-metal elements
STELLA, MATTEO
2017/2018
Abstract
The aim of the present work is to outline a numerical procedure for the simulation of the thermo-mechanical behaviour of a titanium alloy-unidirectional carbon fiber reinforced polymer hybrid material obtained with a co-bonding process. The embedding of optical sensors inside one of the composite blocks allows to monitor the production process, highlighting an unexpected nonlinear behaviour of the strains with respect to the temperature during the cooling phase (associated with most relevant residual stresses building up): such phenomenon has been attributed to a significant viscous behaviour of adhesive at moderately high temperature and has been investigated by means of numerical models. In addition, as common practice for hybrid materials, the characterization of the hybrid interfaces has been performed concentrating on mode I related properties. Conventional and innovative modelling techniques are proposed with the aim to provide an estimation of both thermal residual stress and of mechanical response in fracture tests (DCB) in multi-step analyses: the former, able to correctly reproduce the mechanical behaviour but not the residual stresses building up (because of overestimations associated with the linear cooling assumptions), has been replaced by innovative ones based on the solid explicit modelling of adhesive layers, endowed with a user-defined material behaviour. After the validation of the new procedure with constant adhesive properties, a more detailed modelling (including pressure application and friction effects) with temperature-dependent mechanical properties is proposed. Results confirm that it is only below the adhesive solidification temperature that significant strain and residual stresses build up, thus supporting the hypotheses of significant viscous behaviour of the adhesive at moderately high temperature. The results show that the interposition of an adhesive layer at the interfaces may be exploited as a simple residual stress relief solution that, together with the quantifiable enhanced interfacial behaviour, may be appealing for some applications due to a good gain-over-weight ratio.File | Dimensione | Formato | |
---|---|---|---|
2018_7_Stella.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
4.9 MB
Formato
Adobe PDF
|
4.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141456