The Solar System has several thousands of Near-Earth Objects, which are bodies with an orbit that brings them near to the Earth. Some of them are asteroids that in the future could be at collision risk with our planet. Consequently, the scientific community is currently investigating what we can do to avert an event that could lead to a catastrophic outcome. One of the possibilities that are being considered is the deflection of the asteroid from its trajectory. An Hypervelocity Asteroid Intercept Vehicle (HAIV), a spacecraft inserted in an orbit that impacts the Near-Earth Asteroid (NEA) at very high velocity, may allow us to reach this goal. The Space Mission Planning Advisory Group (SMPAG) is one of the entities that are investigating the feasibility of a mission of this kind, with the coordinated effort of national space agencies and other institutions. In this thesis we develop a simulator of the Guidance, Navigation and Control (GNC) performed by the spacecraft when approaching the asteroid. In particular, we take into account the accuracy of the orbital insertion and, therefore, develop a control system to counteract the error until impact. Considering that the asteroid can be detected only few hours (or even minutes) before the impact, it is mandatory that the correction maneuvers are autonomously computed on board. Therefore, the GNC system is based on a navigation camera, that through an image analysis algorithm and a Kalman filter allows to compute the relative position of the asteroid and the required control thrust. Using MATLAB® and Simulink®, we will simulate the dynamics of the asteroid and the spacecraft, together with the GNC system. The rendering program Blender® will be inserted in the loop to simulate the image acquired by the navigation camera. We will discuss the challenges of such a mission and obtain a preliminary feasibility study within the considered scenario.
Nel sistema solare sono presenti diverse migliaia di Near-Earth Objects, ovvero oggetti la cui orbita li porta a trovarsi periodicamente vicino alla Terra. Alcuni di questi sono asteroidi che potrebbero in futuro collidere con il nostro pianeta. Pertanto, si sta investigando come evitare questa eventualità che potrebbe avere conseguenze catastrofiche. Una delle possibilità che è stata presa in considerazione è la deflessione dell’asteroide dalla sua traiettoria. Un Hypervelocity Asteroid Intercept Vehicle (HAIV), ovvero una navicella inserita in un’orbita che impatti l’asteroide ad alta velocità, potrebbe permettere di ottenere questo obiettivo. Lo Space Mission Planning Advisory Group (SMPAG) è una delle entità che sta correntemente verificando la fattibilità di una missione di questo tipo, con l’impegno coordinato delle agenzie spaziali nazionali e di altre istituzioni. In questa tesi sviluppiamo un simulatore delle operazioni di guida, navigazione e controllo della navicella durante la fase di avvicinamento all’asteroide. In particolare, si tiene conto degli errori di navigazione e, quindi, del sistema di controllo necessario per ridurli fino all’impatto. Dato che l’asteroide può essere rilevato solo poche ore (o addirittura minuti) prima dell’impatto, è necessario che le manovre di correzione siano calcolate autonomamente a bordo. Pertanto, il sistema di navigazione si basa su una telecamera che per mezzo di un algoritmo di analisi dell’immagine e un filtro di Kalman consente di calcolare la posizione relativa dell’asteroide e la spinta di controllo necessaria. Mediante MATLAB® e Simulink® simuleremo le dinamiche dell’asteroide e della navicella, insieme ai sistemi di guida, navigazione e controllo. Il programma di rendering Blender® sarà connesso al sistema per simulare l’immagine acquisita dalla telecamera di navigazione. Discuteremo delle sfide poste da una missione di questo genere e otterremo uno studio di fattibilità preliminare nell’ambito dello scenario considerato.
Development and simulation of an autonomous navigation and control strategy for an asteroid impactor mission
PURPURA, GIOVANNI
2017/2018
Abstract
The Solar System has several thousands of Near-Earth Objects, which are bodies with an orbit that brings them near to the Earth. Some of them are asteroids that in the future could be at collision risk with our planet. Consequently, the scientific community is currently investigating what we can do to avert an event that could lead to a catastrophic outcome. One of the possibilities that are being considered is the deflection of the asteroid from its trajectory. An Hypervelocity Asteroid Intercept Vehicle (HAIV), a spacecraft inserted in an orbit that impacts the Near-Earth Asteroid (NEA) at very high velocity, may allow us to reach this goal. The Space Mission Planning Advisory Group (SMPAG) is one of the entities that are investigating the feasibility of a mission of this kind, with the coordinated effort of national space agencies and other institutions. In this thesis we develop a simulator of the Guidance, Navigation and Control (GNC) performed by the spacecraft when approaching the asteroid. In particular, we take into account the accuracy of the orbital insertion and, therefore, develop a control system to counteract the error until impact. Considering that the asteroid can be detected only few hours (or even minutes) before the impact, it is mandatory that the correction maneuvers are autonomously computed on board. Therefore, the GNC system is based on a navigation camera, that through an image analysis algorithm and a Kalman filter allows to compute the relative position of the asteroid and the required control thrust. Using MATLAB® and Simulink®, we will simulate the dynamics of the asteroid and the spacecraft, together with the GNC system. The rendering program Blender® will be inserted in the loop to simulate the image acquired by the navigation camera. We will discuss the challenges of such a mission and obtain a preliminary feasibility study within the considered scenario.File | Dimensione | Formato | |
---|---|---|---|
2018_07_Purpura.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141461