This work will analyse a hybrid turbulence model behaviour called Dynamic Length Scale Resolution Model (DLRM), studying the intake during open valve cycles in a valve/piston assembly and, after, its compression stroke paying particular attention on wall heat transfer. DLRM model has the capability to dynamically adapt its behaviour according to the grid resolution and to the turbulent length scale. Consequently, DLRM is able to switch from modelling to resolving the flow, changing from a k-omega SST turbulence model to resolving implicit LES. The model behaviour is studied by comparing the results obtained by changing the value of the beta coefficient, which corresponds to the maximum local CFL number and that controls whether the limiting resolution is determined by either the time-step or the mesh size. The open valve cycle results are compared to the ones obtained with a similar DNS simulation, while the compression results both to DNS and LES. Moreover, every simulation is run both on a coarse and on a fine mesh. The open valve cycles mesh is the same used with the DNS simulations. As for compression, the mesh has been generated using the OpenFoam ’blockMesh’ utility . Simulations have been carried out on OpenFoam software. The analysis highlights that, with low speed, during the open valve cycle at low Reynolds number, the model shows some weaknesses, meaning that a mesh refinement and low values are necessary where the turbulence enhances. Generally, despite some differences in velocity values, the predicted flow field is comparable to the DNS one. The results obtained with the fine mesh and lower value, throughout the compression stroke are improved compared to the mesh coarse ones, getting very close to DNS. It appears that DLRM is very suitable for compressions simulations and wall heat transfer predictions. Moreover, adding a low CFL to mesh refinement and to a lower , it would be possible to exploit DLRM at its maximum potential.
Questo lavoro si propone di analizzare il comportamento di un modello di turbolenza ibrido chiamato Dynamic Length Scale Resolution Model (DLRM) studiando il flusso di aspirazione (cicli a valvola aperta) all’interno di un cilindro/pistone e in seguito la sua compressione, ponendo particolare attenzione sullo scambio termico. Il modello DLRM ha la capacitá di adattarsi dinamicamente alla risoluzione della griglia e alla scala da catturare. Di conseguenza é in grado di cambiare, modellando oppure risolvendo il flusso all’occorrenza, passando da un modello di turbolenza k-omega SST a risolvere una LES implicita. Il comportamento del modello viene studiato comparando i risultati ottenuti al variare di un coefficiente beta, pari al reciproco del CFL massimo della cella, che nel modello DLRM controlla se il limite risolutivo sia temporale oppure spaziale. I risultati sono paragonati a quelli ottenuti in analoghe simulazioni DNS per l’aspirazione e sia DNS che LES per la compressione. Inoltre, ogni simulazione viene lanciata sia su una griglia lasca che su una piú fine. La griglia delle simulazioni a valvola aperta é la stessa usata nelle simulazioni DNS. Per la compressione la griglia é stata generata usando la funzione ’blockMesh’ di OpenFoam. Le simulazioni sono state realizzate attraverso il software OpenFoam. Quello che emerge dall’analisi é che durante i cicli a valvola aperta, avendo basse velocitá, a bassi numeri di Reynolds il modello mostra qualche debolezza, risulta che nelle zone dove il flusso inizia ad avere un comportamento turbolento é necessario raffinare la griglia e usare bassi valori di . In generale, seppur con qualche differenza nei valori di velocitá, i risultati ottenuti per il campo di moto sono paragonabili a quelli delle simulazioni DNS. Durante la compressione, i risultati ottenuti con la griglia piú fine e un basso valore di , migliorano lo scambio termico e la temperatura predetta con la mesh lasca, avvicinandosi molto ai valori predetti dalla simulazione DNS. In conclusione emerge che il DLRM é si presta bene a simulare la compressione e a predire i.l flusso termico Inoltre, insieme ad una griglia piú fine e un basso valore di , viene suggerito di lanciare le simulazioni con un CFL massimo basso (intorno a 1), in modo da sfruttare al massimo il potenziale DLRM.
Study of the heat exchange process in internal combustion engines using a dynamic scale-adaptive turbulence model
BUZZI, MATTEO
2017/2018
Abstract
This work will analyse a hybrid turbulence model behaviour called Dynamic Length Scale Resolution Model (DLRM), studying the intake during open valve cycles in a valve/piston assembly and, after, its compression stroke paying particular attention on wall heat transfer. DLRM model has the capability to dynamically adapt its behaviour according to the grid resolution and to the turbulent length scale. Consequently, DLRM is able to switch from modelling to resolving the flow, changing from a k-omega SST turbulence model to resolving implicit LES. The model behaviour is studied by comparing the results obtained by changing the value of the beta coefficient, which corresponds to the maximum local CFL number and that controls whether the limiting resolution is determined by either the time-step or the mesh size. The open valve cycle results are compared to the ones obtained with a similar DNS simulation, while the compression results both to DNS and LES. Moreover, every simulation is run both on a coarse and on a fine mesh. The open valve cycles mesh is the same used with the DNS simulations. As for compression, the mesh has been generated using the OpenFoam ’blockMesh’ utility . Simulations have been carried out on OpenFoam software. The analysis highlights that, with low speed, during the open valve cycle at low Reynolds number, the model shows some weaknesses, meaning that a mesh refinement and low values are necessary where the turbulence enhances. Generally, despite some differences in velocity values, the predicted flow field is comparable to the DNS one. The results obtained with the fine mesh and lower value, throughout the compression stroke are improved compared to the mesh coarse ones, getting very close to DNS. It appears that DLRM is very suitable for compressions simulations and wall heat transfer predictions. Moreover, adding a low CFL to mesh refinement and to a lower , it would be possible to exploit DLRM at its maximum potential.File | Dimensione | Formato | |
---|---|---|---|
2018_7_Buzzi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
55.52 MB
Formato
Adobe PDF
|
55.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141525