In the last two decades, a lot of attention has been focused on Pneumatic Artificial Muscles (PAM) because of their clear advantages, such as inherent compliance, structural flexibility to working environments, compactness, low cost and excellent power to weight ratio compared to other, of the same kind, actuators. Having all the advantages of traditional pneumatic actuators (cylinders) without the main drawback (power/weight ratio) some researchers were euphoric with the idea to replace pneumatic cylinders with PAMs in many applications. Against big expectations, however, pneumatic muscles bring many difficulties as well. The need for a pair of them to have a degree of freedom and highly variable and nonlinear characteristics, which require complex modelling and sophisticated control design for achieving high system performance, have significantly reduced this plan. Still, PAMs have its application importance in the field of interactive robotic devices and rehab systems, but the common belief is that, with finding an appropriate mathematical model, this field will be much more outspread. The main goal of this thesis is to investigate the performance of different approaches to PAM modelling, seeking for a universal model that can be used to control a cable driven robotic system (CDRS), which includes PAM actuators with various dimensions instead of cables. Firstly, an experimental setup capable of performing all relevant examinations of fluidic muscles tests (isometric, isobaric, isotonic), including muscle’s dynamic response test, has been designed. Furthermore, a set of modelling approaches has been analyzed and the comparison between them has been outlined. Therefore, the most suitable model is proposed and evaluated by implementation in the chosen control method. The proposed strategy shows acceptable results in variables prediction, which is proven with successful control simulation. Furthermore, this mathematical model showed a tendency towards valuable results when cross-validation of model parameters, obtained from different dimensions PAMs, was done. Therefore, we believe that further development of this approach is justified, essentially improving the robustness of the model to actuators variability, as well as including real situation phenomena that in this work were not considered.
Nelle ultime due decadi, si è rivolta particolare attenzione ai Muscoli Artificiali Preumatici (MAP) per gli evidenti vantaggi che presentano, tra cui intrinseca reattività, flessibilità strutturale in ambienti lavorativi, compattezza, basso costo ed ottimo rapporto peso/potenza rispetto ad altri attuatori dello stesso tipo. Dal momento che presentano tutti i vantaggi degli attuatori pneumatici tradizionali (cilindrici) senza l’inconveniente principale (rapporto potenza/peso), ad alcuni ricercatori è apparsa interessante la possibilità di sostituire i cilindri tradizionali con i MAP in svariate applicazioni. D’altra parte i muscoli pneumatici presentano varie difficoltà. A deludere notevolmente le aspettative sono il fatto che è necessaria almeno una coppia di questi muscoli per realizzare un grado di libertà e le loro caratteristiche altamente variabili e non lineari, che richiedono una modellazione complessa e un sofisticato sistema di controllo per ottenere prestazioni elevate. Tuttavia i MAP trovano importante applicazione nell’ambito dei dispositivi di robotica interattiva e dei sistemi di riabilitazione e si crede che una volta identificato un modello matematico adeguato, questo campo si possa espandere molto di più. Il principale obiettivo di questa tesi è quello di analizzare le prestazioni dei diversi approcci alla modellizzazione dei MAP e cercare di identificare un modello universale che possa essere utilizzato per controllare un sistema robotico cablato (SRC) che includa attuatori MAP di varie dimensioni piuttosto che cavi. In primo luogo, è stata progettata una configurazione sperimentale in grado di eseguire tutti i test più rilevanti per i muscoli fluidici (isometrici, isobarici, isotonici), tra cui il test di risposta dinamica del muscolo. Inoltre, il modello più adeguato è proposto e valutato con la sua implementazione nel metodo di controllo scelto. La strategia proposta mostra risultati accettabili nella predizione delle variabili, come dimostrato efficacemente meediante simulazione. Inoltre, questo modello matematico ha mostrato di fornire risultati validi in validazioni incrociate, ottenuta da MAP di diverse dimensioni, dei parametri del modello. Pertanto, crediamo in un ulteriore sviluppo di questo approccio migliorando essenzialmente la robustezza del modello rispetto alla variabilità degli attuatori, includendo fenomeni presenti in situazioni reali che in questo lavoro non sono stati considerati.
Comparative assessment and improvement of pneumatic artificial muscles modelling
STOJANOVIC, BRANISLAV
2017/2018
Abstract
In the last two decades, a lot of attention has been focused on Pneumatic Artificial Muscles (PAM) because of their clear advantages, such as inherent compliance, structural flexibility to working environments, compactness, low cost and excellent power to weight ratio compared to other, of the same kind, actuators. Having all the advantages of traditional pneumatic actuators (cylinders) without the main drawback (power/weight ratio) some researchers were euphoric with the idea to replace pneumatic cylinders with PAMs in many applications. Against big expectations, however, pneumatic muscles bring many difficulties as well. The need for a pair of them to have a degree of freedom and highly variable and nonlinear characteristics, which require complex modelling and sophisticated control design for achieving high system performance, have significantly reduced this plan. Still, PAMs have its application importance in the field of interactive robotic devices and rehab systems, but the common belief is that, with finding an appropriate mathematical model, this field will be much more outspread. The main goal of this thesis is to investigate the performance of different approaches to PAM modelling, seeking for a universal model that can be used to control a cable driven robotic system (CDRS), which includes PAM actuators with various dimensions instead of cables. Firstly, an experimental setup capable of performing all relevant examinations of fluidic muscles tests (isometric, isobaric, isotonic), including muscle’s dynamic response test, has been designed. Furthermore, a set of modelling approaches has been analyzed and the comparison between them has been outlined. Therefore, the most suitable model is proposed and evaluated by implementation in the chosen control method. The proposed strategy shows acceptable results in variables prediction, which is proven with successful control simulation. Furthermore, this mathematical model showed a tendency towards valuable results when cross-validation of model parameters, obtained from different dimensions PAMs, was done. Therefore, we believe that further development of this approach is justified, essentially improving the robustness of the model to actuators variability, as well as including real situation phenomena that in this work were not considered.File | Dimensione | Formato | |
---|---|---|---|
2018_07_Stojanovic.pdf
Open Access dal 11/07/2021
Descrizione: Text of the thesis
Dimensione
35.97 MB
Formato
Adobe PDF
|
35.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141715