This thesis presents a probabilistic approach, based on Monte Carlo stochastic simulations, to assess the long-term performance of an electrical system when the sources are a combination of solar energy, wind turbines and a classical thermal power plant. The efficiency of the renewable energy sources (RES) is improved with the power to gas (P2G) technology. Although a wide literature deals with RES and their integration in hybrid systems, there are often substantial limits in the creation of realistic models, while the P2G technology is employed only on specific small-scale applications. In this thesis the most refined literature is taken as guideline to define suitable models for RES. The model for the thermal power plant implies real data from an existent facility while the load curve is generated using a database directly provided by the national grid in UK. An independent and stochastic algorithm to simulate faults is included in every generating component to complete the realistic behavior of the system. The central problem for RES regarding the production discontinuity and the time-shift between the generation and the demand is reduced storing the surplus of power using the P2G technology. This electrochemical process allows to store the energy under the form of synthetic natural gas and it can be a valid and cost-competitive choice compared to the battery solution. Once that the system is defined in all its components a one-year Monte Carlo simulation is proposed, where critical points for the reliability of the system are analyzed. Thereafter the main simulation is run to assess the long-term performances using the reliability index loss of load expectation (LOLE) and the expected energy not supplied (EENS). The availability and capability factors are then studied to determine the efficiency of the RES installed and their actual possibility to supply the system. Finally a sensitivity analysis is performed repeating the simulation variating the rated power of every source and studying the effect on the above indices. In the first chapter main concepts about the reliability of an electrical system are presented, plus the fundamental importance that this factor plays in the society. The second chapter examines the literature relative to the reliability topic and proposes a comparison with the present thesis. The third chapter contains the mathematical information relative to the models for every component of the system. The fourth one presents the case study and the Monte Carlo simulations that allow to study the reliability of the system in a specific case. The fifth contains the sensitivity analysis which determine the influence of every source of power on system. The results show that although the system studied present a low value of LOLE indicator there is an elevated number of short interruption, caused by the inconstancy of the production of RES, so that the thermal plant plays a key-role for the reliability of the system. The sensitivity analysis demonstrates that a variation of the rated power of the Wind Turbine Generators (WTG ) has more impact than its counterpart the Photovoltaic System (PVS) on the reliability of the system. Another aspect regards the Power to Gas (P2G) technology action, which becomes more relevant during the summer months, storing a considerable quantity of gas. Further analysis on the effect of the P2G and the application of the exposed models on a specific part of an existing grid could provide interesting empirical results.
Questa tesi presenta un approccio probabilistico, basato sulla simulazione stocastica di Monte Carlo, per stabilire le performance a lungo termine di un sistema elettrico, quando le sorgenti principali sono pannelli fotovoltaici, turbine eoliche e un impianto termico classico. L’efficienza delle fonti rinnovabili viene incrementata grazie all’utilizzo della tecnologia P2G. Nonostante una vasta letteratura tratti l’argomento delle rinnovabili, sono stati riscontrati spesso dei grossi limiti riguardanti i modelli poco realistici impiegati, mentre la tecnologia P2G viene impiegata solo su applicazioni in piccola scala. In questa tesi le ricerche più avanzate sono prese come guida per creare dei modelli realistici per le fonti rinnovabili. Il modello per l’impianto termico è basato su dati forniti da un impianto esistente, mentre la curva di carico deriva direttamente dai dati forniti dalla rete elettrica nazionale degli U.K. Un algoritmo indipendente e stocastico simula i guasti in ogni componente della generazione in modo da ottenere un sistema realistico. Il problema principale delle fonti rinnovabili, cioè la discontinuità della produzione e lo sfasamento temporale tra la produzione dell’energia e il suo consumo, viene ridotto stoccando l’energia sotto forma di gas grazie alla tecnologia P2G. Questo processo elettrochimico permette di stoccare l’energia sotto forma di gas sintetico e può essere un’alternativa valida ed economica alle batterie. Una volta che tutte le componenti del sistema sono state definite è possibile effettuare la simulazione di Monte Carlo sul periodo di un anno, analizzando i punti critici per l’affidabilità del sistema. In seguito si procede con la simulazione principale, che permette di stabilire l’indice di perdita di carico prevista (LOLE) e l’indice relativo all’aspettativa di energia non fornita (EENS). Gli indici di disponibilità e di capacità sono altresì studiati per determinare l’efficienza delle RES installate e la loro effettiva capacità di alimentare il sistema. Infine è proposta un’analisi della sensitività ripetendo la simulazione e variando la potenza nominale di ogni fonte, studiando così gli effetti sugli indici appena esposti. Nel primo capitolo sono presentati i concetti principali relativi all’affidabilità di un sistema elettrico, viene inoltre sottolineata l’importanza del vettore elettrico nella società moderna. Il secondo capitolo analizza la letteratura relativa al tema dell’affidabilità e propone un paragone con le tematiche trattate in questa tesi. Il terzo capitolo contiene le informazioni matematiche relative ai modelli utilizzati per ogni componente del sistema. Il quarto presenta lo studio di una specifica condizione del sistema attraverso la simulazione di Monte Carlo. Il quinto racchiude l’analisi della sensitività, che determina l’influenza di ogni sorgente di potenza sul sistema. I risultati mostrano che nonostante il sistema presenti un valore del LOLE relativamente basso vi è un elevato numero di interruzioni di breve durata, causato dall’incostanza nella produzione da parte delle RES, come conseguenza l’impianto termico riveste un ruolo chiave per l’affidabilità del sistema. L’analisi della sensitività dimostra come la variazione della potenza nominale installata delle turbine eoliche (WTG) abbia più rilevanza rispetto alla sua controparte il sistema fotovoltaico (PVS) per quanto riguarda l’affidabilità del sistema. Un altro tema riguarda l’azione tecnologia P2G, che diventa più intensa durante i mesi estivi, stoccando una considerevole quantità di gas. Ulteriori analisi riguardanti l’effetto del P2G e l’applicazione dei modelli esposti su una specifica parte di rete elettrica già esistente potrebbero dare interessanti riscontri empirici.
Study of the generation reliability of an electrical system with high penetration of RES and P2G technology
BALZARI, LUCA
2017/2018
Abstract
This thesis presents a probabilistic approach, based on Monte Carlo stochastic simulations, to assess the long-term performance of an electrical system when the sources are a combination of solar energy, wind turbines and a classical thermal power plant. The efficiency of the renewable energy sources (RES) is improved with the power to gas (P2G) technology. Although a wide literature deals with RES and their integration in hybrid systems, there are often substantial limits in the creation of realistic models, while the P2G technology is employed only on specific small-scale applications. In this thesis the most refined literature is taken as guideline to define suitable models for RES. The model for the thermal power plant implies real data from an existent facility while the load curve is generated using a database directly provided by the national grid in UK. An independent and stochastic algorithm to simulate faults is included in every generating component to complete the realistic behavior of the system. The central problem for RES regarding the production discontinuity and the time-shift between the generation and the demand is reduced storing the surplus of power using the P2G technology. This electrochemical process allows to store the energy under the form of synthetic natural gas and it can be a valid and cost-competitive choice compared to the battery solution. Once that the system is defined in all its components a one-year Monte Carlo simulation is proposed, where critical points for the reliability of the system are analyzed. Thereafter the main simulation is run to assess the long-term performances using the reliability index loss of load expectation (LOLE) and the expected energy not supplied (EENS). The availability and capability factors are then studied to determine the efficiency of the RES installed and their actual possibility to supply the system. Finally a sensitivity analysis is performed repeating the simulation variating the rated power of every source and studying the effect on the above indices. In the first chapter main concepts about the reliability of an electrical system are presented, plus the fundamental importance that this factor plays in the society. The second chapter examines the literature relative to the reliability topic and proposes a comparison with the present thesis. The third chapter contains the mathematical information relative to the models for every component of the system. The fourth one presents the case study and the Monte Carlo simulations that allow to study the reliability of the system in a specific case. The fifth contains the sensitivity analysis which determine the influence of every source of power on system. The results show that although the system studied present a low value of LOLE indicator there is an elevated number of short interruption, caused by the inconstancy of the production of RES, so that the thermal plant plays a key-role for the reliability of the system. The sensitivity analysis demonstrates that a variation of the rated power of the Wind Turbine Generators (WTG ) has more impact than its counterpart the Photovoltaic System (PVS) on the reliability of the system. Another aspect regards the Power to Gas (P2G) technology action, which becomes more relevant during the summer months, storing a considerable quantity of gas. Further analysis on the effect of the P2G and the application of the exposed models on a specific part of an existing grid could provide interesting empirical results.File | Dimensione | Formato | |
---|---|---|---|
2018_07_BALZARI.pdf
non accessibile
Descrizione: Thesis text
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141861