With the depletion of fossil energy and the deterioration of environmental, the issue of energy has received increasing attention as the primary issue. As an effective way to combine distributed generators(DGs), energy storage system(ESS) and loads, microgrid has developed a lot. The AC/DC hybrid microgrid contains both AC and DC buses. Compared with the traditional AC microgrid and novel DC microgrid, it can effectively avoid repeated power conversion, improve power quality and energy utilization. What’s more, the operation can be more flexible. Hybrid microgrid has become the future of microgrid. This thesis focuses on the control strategy of AC/DC hybrid microgrid. It discusses about different control strategies in different operation modes of hybrid microgrid, especially, the novel entire network droop control strategy for AC-DC mixed islanding mode is proposed. According to the proposed control strategy, research on smooth transition is also conducted. Firstly, an AC/DC hybrid microgrid structure including PV cell, battery, fuel cell and constant power load is proposed in a small plant and an electromagnetic transient simulation model is established based on PSCAD/EMTDC. Secondly, the control strategies of AC/DC hybrid microgrids in different operating modes are analyzed. To solve the problems of traditional control strategy such as unreasonable load distribution, heavy dependence on microgrid structure, excessive transmission power of interlink converter(ILC), etc., a novel entire network droop control strategy is proposed. In grid-connected mode, the microgrid is supported by utility grid to maintain stable operation of the system and make maximum use of renewable energy. In islanding mode, all controllable DGs provide support for the system. The proposed control strategy improves load sharing and makes the system more reliable and expandable. The "plug and play" of DGs is realized. The simulation results based on PSCAD/EMTDC show that by applying this control strategy, the AC/DC hybrid microgrid can operate stably and efficiently. Finally, the smooth transition method between different operating modes is studied. The structure of PI regulator is analyzed and the reason of transition impact is discussed. A smooth transition method based on islanding signal is proposed. Compared with the traditional smooth transition method, the simulation results show that the proposed smooth transition method can greatly simplify the setting of the PI regulator’s parameters and achieve better smooth transition effects. During mode transition, the transient time is shorter and the electrical impact is smaller. The influence of load on smooth transition is also studied based on the novel smooth transition method.
Con l’esaurirsi dei combustibili fossili e il deterioramento delle condizioni ambientali, sempre maggiore attenzione ricade sulla questione dell’approvvigionamento energetico e sulla sua primaria importanza. Le microreti in particolare hanno conosciuto un importante sviluppo in quanto sono considerate un sistema in grado di raggruppare efficacemente nuove fonti energetiche, dispositivi di accumulo e carichi. Le microreti ibride CA/CC contengono sia sbarre in CA che in CC. Rispetto alle tradizionali microreti in CA e alle più recenti microreti in CC, le microreti ibride riescono efficacemente a ridurre il numero di stadi di conversione in cascata, migliorare la qualità della fornitura e l’utilizzazione dell’energia. Inoltre, la gestione delle microreti ibride può essere significativamente più flessibile. Per queste ragioni, le microreti ibride sono considerate il futuro delle microreti. Questa tesi è focalizzata sulle strategie di controllo delle microreti ibride CA/CC. Vengono discusse diverse strategie di controllo in diversi modi operativi delle microreti ibride e, in particolare, si propone una nuova strategia di controllo basata su statismi generalizzati per l’intera rete che consente la gestione in isola delle porzioni in CA e CC. In accordo con quanto previsto dalla strategia di controllo proposta, viene inoltre presentata la ricerca svolta sulle transizioni morbide (cosiddette “smooth transition”) tra differenti modi operativi. In primo luogo, la struttura di una microrete ibrida CA/CC che comprende un impianto fotovoltaico, batterie, celle a combustibile e carichi a potenza costante viene introdotta considerando un piccolo impianto; un modello di simulazione viene definito tramite PSCAD/EMTDC. In seconda battuta, vengono analizzate le strategie di controllo delle microreti ibride CA/CC nei diversi modi operativi. Per risolvere i problemi delle strategie di controllo tradizionali, quali distribuzione squilibrata del carico, forte dipendenza dalla struttura della microrete, dimensionamento eccessivo del convertitore di interconnessione ecc., si propone una nuova strategia di controllo basata su statismi generalizzati per l’intera rete (indifferentemente in CA o CC). Quando la microrete opera connessa alla rete di distribuzione, si sfrutta quest’ultima per mantenere un funzionamento stabile del sistema e sfruttare al massimo le fonti rinnovabili. Quando operata in isola, tutta la generazione distribuita controllabile fornisce supporto al sistema. La strategia di controllo proposta migliora la distribuzione del carico e rende il sistema più affidabile e espandibile; inoltre, realizza la cosiddetta connessione “plug-and-play” per la generazione distribuita. I risultati delle simulazioni svolte in ambiente PSCAD/EMTDC mostrano che, applicando la strategia di controllo proposta, la microrete ibrida CA/CC riesce a operare in modo stabile ed efficiente. Infine, i metodi per ottenere una transizione morbida tra i diversi modi operativi sono studiati. Viene analizzata la struttura dei regolatori PI e viene discussa la causa dell’impatto delle transizioni tra modi operativi sul controllo della rete. Viene proposto un metodo per ottenere transizioni morbide basato su un segnale di passaggio all’operazione in isola. Rispetto ai metodi tradizionali per ottenere transizioni morbide, i risultati di simulazione provano che il metodo proposto permette di semplificare significativamente la taratura dei guadagni dei regolatori PI e di ottenere prestazioni migliori. Durante la transizione tra due modi operativi, la durata del transitorio è minore e l’effetto sulle grandezze elettriche è più contenuto. L’effetto del carico sulla transizione morbida tra modi operativi è studiato considerando il metodo proposto.
Research on grid-connected and islanding control strategy of AC/DC hybrid microgrid in a small plant
CHEN, ZHENGHONG
2017/2018
Abstract
With the depletion of fossil energy and the deterioration of environmental, the issue of energy has received increasing attention as the primary issue. As an effective way to combine distributed generators(DGs), energy storage system(ESS) and loads, microgrid has developed a lot. The AC/DC hybrid microgrid contains both AC and DC buses. Compared with the traditional AC microgrid and novel DC microgrid, it can effectively avoid repeated power conversion, improve power quality and energy utilization. What’s more, the operation can be more flexible. Hybrid microgrid has become the future of microgrid. This thesis focuses on the control strategy of AC/DC hybrid microgrid. It discusses about different control strategies in different operation modes of hybrid microgrid, especially, the novel entire network droop control strategy for AC-DC mixed islanding mode is proposed. According to the proposed control strategy, research on smooth transition is also conducted. Firstly, an AC/DC hybrid microgrid structure including PV cell, battery, fuel cell and constant power load is proposed in a small plant and an electromagnetic transient simulation model is established based on PSCAD/EMTDC. Secondly, the control strategies of AC/DC hybrid microgrids in different operating modes are analyzed. To solve the problems of traditional control strategy such as unreasonable load distribution, heavy dependence on microgrid structure, excessive transmission power of interlink converter(ILC), etc., a novel entire network droop control strategy is proposed. In grid-connected mode, the microgrid is supported by utility grid to maintain stable operation of the system and make maximum use of renewable energy. In islanding mode, all controllable DGs provide support for the system. The proposed control strategy improves load sharing and makes the system more reliable and expandable. The "plug and play" of DGs is realized. The simulation results based on PSCAD/EMTDC show that by applying this control strategy, the AC/DC hybrid microgrid can operate stably and efficiently. Finally, the smooth transition method between different operating modes is studied. The structure of PI regulator is analyzed and the reason of transition impact is discussed. A smooth transition method based on islanding signal is proposed. Compared with the traditional smooth transition method, the simulation results show that the proposed smooth transition method can greatly simplify the setting of the PI regulator’s parameters and achieve better smooth transition effects. During mode transition, the transient time is shorter and the electrical impact is smaller. The influence of load on smooth transition is also studied based on the novel smooth transition method.File | Dimensione | Formato | |
---|---|---|---|
Research on Grid-connected and Islanding Control Strategy of AC-DC Hybrid Microgrid in a Small Plant.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/141864