The thesis stems from the need to create a model capable of describing operations of a medium-sized concentrating solar power plant, made by - Solar Field (fresnel collectors) - thermocline Thermal Energy Storage - ORC cycle for electricity production The initial plant was designed without thermal storage. It was added following the European project ORC-Plus, H2020. In particular, the aim of the thesis is to create a dynamic model for the thermocline Thermal Energy Storage. In the specific case, a direct storage, characterized by a magnetite packed-bed interacting with the oil coming from the solar field, absorbing or releasing energy to it. The main purpose is to perform fast simulation, without losing too much accuracy in the results. The model is therefore a simplified model, not describing radial or circumferential motions of the fluid. After a brief overview about the European project "ORC-Plus", the thermocline thermal energy storage technology is described, togheter with its possible classifications, efficiencies of such a storage and the concept of “thermal hysteresis”. After an analysis of the existing models in literature, two models were developed: -1D-2P, in which the flow of liquid across the packed bed is considered uniform and one-dimensional (axial). This model evaluates, for each discretized element of the mesh, liquid and solid phase temperatures and energy exchanges between the two. -1D-1P, in which the flow of liquid through the packed bed is again considered uniform and one-dimensional, but liquid and solid are considered as an equivalent medium with intermediate characteristics weighted between the two. A single equivalent temperature is evaluated for each discretized element of the mesh, halving the unknowns and reducing computational time by about 50%. Both models evaluate the variation of the fluid volume inside the tank during operations. Subsequently, both models are validated, both with experimental data (CICenergigune and SolarOne) and with other models (Xu et al. Model and CICenergigune model). Regarding Thermal Energy Storages, the 1D-1P simplification does not lose significant accuracy. This is observed thanks to three weekly-simulations of a complete power plant (Solar Field, Thermal Energy Storage, Power Block): one week in June, one in March and one in January. From this simulations the yearly electricity production is estimated. The difference between 1D-2P and 1D-2P is resulted very limited (<1%). The situation changes when the interstitial heat transfer between liquid and solid is low, but this is a condition that concerns other applications. The same work is carried out simulating the same plant but coupled to a two-tank thermal storage. Thanks to a simplified economic analysis of both plants, the cost of the plant with a thermocline tank and that of the plant with a double-tank thermal energy storage are derived. Knowing the annual electricity production of both plants- previously estimated - the LCOEs are calculated and compared: a saving of 6% is achieved in the plant with thermocline Thermal Energy Storage.
La tesi nasce dall’esigenza di creare un modello in grado di descrivere il funzionamento di un impianto solare a concentrazione di media taglia, formato da -Campo solare con collettori fresnel -Accumulo termico termoclino -Ciclo ORC a ciclopentano per la produzione elettricità L’impianto nasce inizialmente senza accumulo termico. Successimante quest’ultimo è stato aggiunto a seguito del progetto europeo ORC-Plus, H2020. In particolare l’obiettivo della tesi è quello di creare un modello dinamico per l’accumulo termico termoclino. Nel caso specifico, un accumulo termico diretto, caratterizzato da un letto impaccato di magnetite che va ad interagire con l’olio proveniente dal campo solare, assorbendone o cedendo ad esso energia. Lo scopo principale è quello di permettere una simulazione sufficientemente rapida, senza perdere accuratezza nei risultati. Il modello è pertanto semplificato e non descrive moti radiali o circonferenziali del fluido all’interno del letto impaccato. Dopo una descrizione del progetto europeo “ORC-Plus”, viene descritta la tecnologia di accumulo termico termoclino, le possibili classificazioni, e vengono definite efficienze e il concetto di isteresi termica. Dopo un’analisi dei modelli esistenti in letteratura si è proceduto allo sviluppo di due modelli: -1D-2P, in cui il flusso del liquido attraverso il letto impaccato è considerato uniforme e monodimensionale (assiale). Questo modello valuta per ogni elemento discretizzato temperature di fase liquida e solida e rispettivi scambi di energia. -1D-1P, in cui il flusso del liquido attraverso il letto impaccato è nuovamente considerato uniforme e monodimensionale, ma liquido e solido sono considerati come mezzo equivalente con caratteristiche intermedie pesate tra i due. Una sola temperatura equivalente è valutata per ogni elemento discretizzato, riducendo le incognite e il tempo computazionale del 50%. Entrambi i modelli valutano la variazione del volume di fluido contenuto nel serbatoio ad ogni step temporale. Successivamente entrambi i modelli vengono validati, sia con dati sperimentali (CICenergigune e SolarOne) sia con altri modelli (Xu et al. model e CICenergigune model). Nell’ambito degli accumuli termici la semplificazione 1D-1P non perde accuratezza in maniera significante. Questo viene osservato tramite la simulazione di un impianto completo (SF,TES,PB) di 3 settimane tipo: una settimana di Giugno, una di Marzo e una di Gennaio. La differenza tra modello 1D-2P e 1D-2P è molto limitata (<1%). La situazione cambia nel momento in cui lo scambio di calore tra fase liquida e solida è basso, ma è una condizione che riguarda altre applicazioni. Il tutto viene paragonato alla produzione annuale dello stesso impianto ma accoppiato ad un accumulo termico a due serbatoi. Grazie ad una analisi economica semplificata di entrambi gli impianti, il costo dell’impianto con serbatoio termoclino e quello dell’impianto con accumulo termico a due serbatoi vengono derivati. Avendo precedentemente calcolato la produzione elettrica annuale di entrambi gli impianti, gli LCOE vengono calcolati e paragonati: si evince un risparmio del 6% nell’impianto con accumulo termico termoclino.
Modeling of a thermocline energy storage : application to a concentrating solar power plant
AVALLONE, FABRIZIO
2017/2018
Abstract
The thesis stems from the need to create a model capable of describing operations of a medium-sized concentrating solar power plant, made by - Solar Field (fresnel collectors) - thermocline Thermal Energy Storage - ORC cycle for electricity production The initial plant was designed without thermal storage. It was added following the European project ORC-Plus, H2020. In particular, the aim of the thesis is to create a dynamic model for the thermocline Thermal Energy Storage. In the specific case, a direct storage, characterized by a magnetite packed-bed interacting with the oil coming from the solar field, absorbing or releasing energy to it. The main purpose is to perform fast simulation, without losing too much accuracy in the results. The model is therefore a simplified model, not describing radial or circumferential motions of the fluid. After a brief overview about the European project "ORC-Plus", the thermocline thermal energy storage technology is described, togheter with its possible classifications, efficiencies of such a storage and the concept of “thermal hysteresis”. After an analysis of the existing models in literature, two models were developed: -1D-2P, in which the flow of liquid across the packed bed is considered uniform and one-dimensional (axial). This model evaluates, for each discretized element of the mesh, liquid and solid phase temperatures and energy exchanges between the two. -1D-1P, in which the flow of liquid through the packed bed is again considered uniform and one-dimensional, but liquid and solid are considered as an equivalent medium with intermediate characteristics weighted between the two. A single equivalent temperature is evaluated for each discretized element of the mesh, halving the unknowns and reducing computational time by about 50%. Both models evaluate the variation of the fluid volume inside the tank during operations. Subsequently, both models are validated, both with experimental data (CICenergigune and SolarOne) and with other models (Xu et al. Model and CICenergigune model). Regarding Thermal Energy Storages, the 1D-1P simplification does not lose significant accuracy. This is observed thanks to three weekly-simulations of a complete power plant (Solar Field, Thermal Energy Storage, Power Block): one week in June, one in March and one in January. From this simulations the yearly electricity production is estimated. The difference between 1D-2P and 1D-2P is resulted very limited (<1%). The situation changes when the interstitial heat transfer between liquid and solid is low, but this is a condition that concerns other applications. The same work is carried out simulating the same plant but coupled to a two-tank thermal storage. Thanks to a simplified economic analysis of both plants, the cost of the plant with a thermocline tank and that of the plant with a double-tank thermal energy storage are derived. Knowing the annual electricity production of both plants- previously estimated - the LCOEs are calculated and compared: a saving of 6% is achieved in the plant with thermocline Thermal Energy Storage.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Avallone.pdf
accessibile in internet per tutti
Descrizione: Modeling of a Thermocline Energy Storage
Dimensione
9.11 MB
Formato
Adobe PDF
|
9.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142087