Product development processes in the aerospace industry are continuously subject to new challenges in order to achieve ever-increasing efficiency. New aircraft are required to fly higher, faster and longer, at a lower cost. With the increasing complexity of products, traditional production technologies are no longer sufficient. In this perspective, there are several advantages that 3D printing provided to the reference sector. Among the opportunities offered by additive manufacturing technologies, the topological optimization process stands out: an automated method, to be integrated from the early stages of the design process, which, using the material only where necessary, allows the maximization of the strength/weight ratio of the optimized structure. In this thesis the supporting structure of a drone is designed. In particular, the study aims to validate the topological optimization process on a product to be made of polymeric material through the FDM (fused deposition modeling) additive technology. The study is developed starting from the identification of the remote piloting system to be used as a reference and as a means of comparison for the new structure. After selecting the 'quadcopter' category and highlighting functional and productive criticalities, the design constraints and objectives are declared in line with the needs of the sector. Wanting to characterize the materials whose properties are attributed to the model in the optimization stage we proceed by printing and pulling the specimens according to the specific standard for polymers and copolymers. This allows to evaluate the overall quality of the 3D printing machine-material set. Once the load models have been established, we proceed with the actual optimization. The traditional structural simulations allow to verify if a project will support the requested loads satisfying the stress constraints; Solidthinking Inspire, the optimization software proposed in this thesis, improves and accelerates this process by generating a new layout of material within a defined space using the loads as inputs. Finally, the optimized structure is subjected to FEA analysis, redefined, 3D printed and compared to the reference one.
I processi di sviluppo del prodotto nell’industria aerospaziale sono continuamente sottoposti a nuove sfide per raggiungere un’efficienza sempre maggiore. Ai nuovi velivoli viene richiesto di volare più in alto, più velocemente e più a lungo, ad un costo inferiore. Con l’aumentare della complessità dei prodotti, le tradizionali tecnologie produttive non sono più sufficienti. In questa prospettiva, sono diversi i vantaggi apportati dall’impiego della stampa 3D al settore di riferimento. Tra le opportunità offerte dalla tecnologia additiva emerge il processo di ottimizzazione topologica: un metodo automatizzato, da integrare fin dalle prime fasi del processo di design, che, impiegando il materiale solo dove necessario, consente la massimizzazione del rapporto resistenza/peso della struttura ottimizzata. Nella presente tesi viene progettata la struttura portante di un drone. In particolare, lo studio mira a validare il processo di ottimizzazione topologica su un prodotto da realizzare in materiale polimerico per mezzo della tecnologia additiva FDM (fused deposition modeling). Lo studio è sviluppato a partire dall’individuazione del sistema a pilotaggio remoto da usare come riferimento e mezzo di paragone per la nuova struttura. Selezionata la categoria ‘quadricottero’ ed evidenziatene criticità funzionali e produttive, vengono dichiarati i vincoli e gli obiettivi progettuali in linea con le esigenze del settore. Volendo caratterizzare i materiali le cui proprietà vengono attribuite al modello in fase di ottimizzazione si procede stampando e trazionando i provini secondo lo standard specifico per polimeri e copolimeri. Questo permette di valutare l’insieme qualitativo macchina di stampa 3D/materiale. Stabiliti i modelli di carico, si procede con l’ottimizzazione vera e propria. Le tradizionali simulazioni strutturali consentono di verificare se un progetto supporterà i carichi richiesti soddisfacendo i vincoli di stress; Solidthinking Inspire, il software di ottimizzazione proposto in questa tesi, migliora e accelera questo processo generando un nuovo layout di materiale all’interno di uno spazio definito utilizzando i carichi come input. La struttura ottimizzata viene, infine sottoposta ad analisi FEA, ridefinita, stampata e confrontata con quella di riferimento.
D.Meno. Indagine sul ruolo della manifattura additiva nel settore aerospaziale, con sviluppo, ottimizzazione topologica e stampa 3D di un drone
LOLLI, GIULIA
2017/2018
Abstract
Product development processes in the aerospace industry are continuously subject to new challenges in order to achieve ever-increasing efficiency. New aircraft are required to fly higher, faster and longer, at a lower cost. With the increasing complexity of products, traditional production technologies are no longer sufficient. In this perspective, there are several advantages that 3D printing provided to the reference sector. Among the opportunities offered by additive manufacturing technologies, the topological optimization process stands out: an automated method, to be integrated from the early stages of the design process, which, using the material only where necessary, allows the maximization of the strength/weight ratio of the optimized structure. In this thesis the supporting structure of a drone is designed. In particular, the study aims to validate the topological optimization process on a product to be made of polymeric material through the FDM (fused deposition modeling) additive technology. The study is developed starting from the identification of the remote piloting system to be used as a reference and as a means of comparison for the new structure. After selecting the 'quadcopter' category and highlighting functional and productive criticalities, the design constraints and objectives are declared in line with the needs of the sector. Wanting to characterize the materials whose properties are attributed to the model in the optimization stage we proceed by printing and pulling the specimens according to the specific standard for polymers and copolymers. This allows to evaluate the overall quality of the 3D printing machine-material set. Once the load models have been established, we proceed with the actual optimization. The traditional structural simulations allow to verify if a project will support the requested loads satisfying the stress constraints; Solidthinking Inspire, the optimization software proposed in this thesis, improves and accelerates this process by generating a new layout of material within a defined space using the loads as inputs. Finally, the optimized structure is subjected to FEA analysis, redefined, 3D printed and compared to the reference one.File | Dimensione | Formato | |
---|---|---|---|
D_meno_849915.pdf
solo utenti autorizzati dal 19/07/2021
Descrizione: Testo della tesi
Dimensione
21.33 MB
Formato
Adobe PDF
|
21.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142274