The Molten Salt Fast Reactor (MSFR) is the circulating-fuel fast-neutron-spectrum reactor concept currently object of research under the EU SAMOFAR (Safety Assessment of the Molten Salt Fast Reactor) project, within the international framework for the development of fourth-generation nuclear reactors known as Generation-IV International Forum (GIF-IV). The purpose of the present thesis work is the development of control-oriented simulation tools and the preliminary model-based design of the control system of the MSFR and its Balance of Plant. After a brief introduction, where, besides a brief overview of the various reactor concepts considered in Gen-IV, the MSFR is described, highlighting advantages and potentialities allowed by the employment of a circulating nuclear fuel together with a fast-neutron-spectrum, in Chapter 2 an analytic 2-D approach is developed for the calculation of the Delayed Neutron Precursors (DNPs) spatial distribution, in steady-state and for axial velocity profiles, and for the calculation of the effective delayed neutron fraction. The latter is a fundamental parameter for the safety and control of a nuclear reactor, and for circulating-fuel its evaluation results considerably complicated by the DNPs’ motion. Chapter 3 is dedicated to the development of the plant simulator and to the analysis of plant’s free dynamics. The simulator is developed using the Modelica object-oriented language and implemented in the Dymola® simulation environment. Focus is placed on the development of the core’s and fuel circuit’s models, in which the presence of a circulating fuel requires an innovative approach for the neutronics. 1-D modeling is used, being higher level of detail incompatible with the computational-efficiency requirement that a control-oriented simulator must fulfill. Lastly, in Chapter 4, the plant control system is developed, using a decentralized feedback control scheme and conventional PI-controllers. Various input/output configurations are proposed, using a Relative Gain Array analysis for the selection of the optimal input/output pairings, and implemented in the same environment used for the simulator. The performances of the different control systems are then analyzed, showing promising potentialities for the MSFR in terms of load-following capabilities. In the end, an initial approach to a more sophisticated, physics-based Lyapunov feedback control system, based on the shifted-ectropy concept, is also proposed and discussed.
Il Molten Salt Fast Reactor (MSFR) è il concetto di reattore veloce a combustibile circolante attualmente in fase di ricerca nell’ambito del progetto SAMOFAR dell’Unione Europea, all’interno del contesto internazionale di sviluppo di reattori nucleari di quarta generazione noto come Generation-IV International Forum (GIF-IV). L’obiettivo di questa tesi consiste nello sviluppo di strumenti finalizzati alla simulazione orientata al controllo e al design preliminare del sistema di controllo per il MSFR e il relativo Balance of Plant. Dopo una breve introduzione in cui, oltre ad una rapida panoramica sui diversi concetti di reattore considerati nell’ambito di Gen-IV, viene descritto il sistema MSFR, evidenziando i vantaggi e le potenzialità fornite dall’utilizzo di un combustibile nucleare circolante unito ad uno spettro neutronico veloce, nel Capitolo 2 viene sviluppato un approccio analitico 2-D per il calcolo della distribuzione spaziale dei precursori neutronici, in stato stazionario e per profilo di velocità assiale, e della frazione efficace di neutroni ritardati. Quest’ultima è un parametro fondamentale per la sicurezza ed il controllo di un reattore nucleare, e nel caso di combustibile circolante il suo calcolo risulta notevolmente complicato dal moto dei precursori neutronici. Il Capitolo 3 è dedicato allo sviluppo del simulatore d’impianto e all’analisi della dinamica libera. Il simulatore è sviluppato utilizzando il linguaggio orientato agli oggetti Modelica ed è implementato in ambiente Dymola®. L’attenzione è posta sullo sviluppo dei modelli del core e del circuito del combustibile, nei quali la presenza di combustibile circolante rende necessario un approccio innovativo per la neutronica. La modellazione è 1-D, essendo livelli di dettaglio superiori non compatibili col requisito di efficienza computazionale richiesto ad un simulatore orientato al controllo. Infine, nel Capitolo 4, viene sviluppato il sistema di controllo dell’impianto, utilizzando una logica di controllo in feedback decentralizzato e controller convenzionali proporzionali-integrali (PI). Varie configurazioni input/output sono proposte, sfruttando una procedura di analisi RGA (Relative Gain Array) per la selezione degli accoppiamenti input/output più efficaci, ed implementate nello stesso ambiente del simulatore. Le prestazioni dei diversi sistemi di controllo sono poi analizzate, evidenziando promettenti potenzialità per il MSFR in termini di capacità di operare in modalità load-following. Infine, viene proposto e discusso un approccio iniziale ad un sistema di controllo più sofisticato, basato sulla teoria del controllo di Lyapunov e sul concetto fisico di shifted-ectropy.
Development of control-oriented simulation tools and control strategies for the Gen-IV molten salt fast reactor
TRIPODO, CLAUDIO
2017/2018
Abstract
The Molten Salt Fast Reactor (MSFR) is the circulating-fuel fast-neutron-spectrum reactor concept currently object of research under the EU SAMOFAR (Safety Assessment of the Molten Salt Fast Reactor) project, within the international framework for the development of fourth-generation nuclear reactors known as Generation-IV International Forum (GIF-IV). The purpose of the present thesis work is the development of control-oriented simulation tools and the preliminary model-based design of the control system of the MSFR and its Balance of Plant. After a brief introduction, where, besides a brief overview of the various reactor concepts considered in Gen-IV, the MSFR is described, highlighting advantages and potentialities allowed by the employment of a circulating nuclear fuel together with a fast-neutron-spectrum, in Chapter 2 an analytic 2-D approach is developed for the calculation of the Delayed Neutron Precursors (DNPs) spatial distribution, in steady-state and for axial velocity profiles, and for the calculation of the effective delayed neutron fraction. The latter is a fundamental parameter for the safety and control of a nuclear reactor, and for circulating-fuel its evaluation results considerably complicated by the DNPs’ motion. Chapter 3 is dedicated to the development of the plant simulator and to the analysis of plant’s free dynamics. The simulator is developed using the Modelica object-oriented language and implemented in the Dymola® simulation environment. Focus is placed on the development of the core’s and fuel circuit’s models, in which the presence of a circulating fuel requires an innovative approach for the neutronics. 1-D modeling is used, being higher level of detail incompatible with the computational-efficiency requirement that a control-oriented simulator must fulfill. Lastly, in Chapter 4, the plant control system is developed, using a decentralized feedback control scheme and conventional PI-controllers. Various input/output configurations are proposed, using a Relative Gain Array analysis for the selection of the optimal input/output pairings, and implemented in the same environment used for the simulator. The performances of the different control systems are then analyzed, showing promising potentialities for the MSFR in terms of load-following capabilities. In the end, an initial approach to a more sophisticated, physics-based Lyapunov feedback control system, based on the shifted-ectropy concept, is also proposed and discussed.File | Dimensione | Formato | |
---|---|---|---|
2018_10_Tripodo.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
13.28 MB
Formato
Adobe PDF
|
13.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142384