The role of this work is to provide an experimental characterization and modeling of high temperature thermal energy storage in rock bed. As regards the experimental activity, tests were performed on a rock bed of 1.5 m^3 capacity. The storage material was decided to be Swedish Diabase crushed rocks, with dimensions in the range 20-40 mm. The working temperature was approximately 600°C. Several configurations of air flows never presented in literature were tested, with the main focus on defining buoyancy effects on the performance of the storage. Firstly, only different valve configurations were compared, then also a different inner structure of the rock bed, namely switching from a bed filled only with rocks to a configuration with insulation layers on the axial direction to prevent buoyancy effects. Figures of merit were defined in order to compare different setups mainly in terms of energy and exergy efficiencies during charge and discharge phases, and in overall perspective. A 3D reconstruction of the temperature profile inside the rock bed was performed by interpolating temperature values logged during tests by means of an already existing model, whose validation for the current setup is provided. Estimation of heat losses was performed by post-processing experimental data. Validation of the 1D electrical analogy for the calculation of heat losses through the walls was performed by means of IR measurements. Graphs concerning heat losses, heat storage and heat recovery were plotted in order to investigate their evolution in time. As far as the modeling activity is concerned, a 2D model was implemented as a simulation tool for the behavior of the rock bed during the charge phase in different configurations. A description of the geometry, of the equations considered and of the solving strategy is given. Variable thermo-physical properties are considered for both air and rocks, in order to enable a good matching between model analysis and experimental data. The software used for the solution of the model is COMSOL Multiphysics 5.3. Results of the simulations are shown in terms of heat distribution and air flow path in the rock bed at different time steps. Eventually, the model was validated by means of experimental results. A comparison of the obtained results with literature was performed and conclusions regarding the horizontal setup were drawn, along with the presentation of suggestions for future works.
Il ruolo del presente lavoro è di produrre una caratterizzazione sperimentale e una modellizzazione di uno stoccaggio di energia termica ad alta temperatura in un letto di rocce. Per quanto riguarda l'attività sperimentale, sono stati condotti esperimenti su di un letto di rocce di capacità 1.5 m^3. Il materiale di stoccaggio è Diabase Svedese, sotto forma di rocce con dimensioni nell'intervallo 20-40 mm. La temperatura di lavoro è circa 600°C. Sono state sperimentate diverse configurazioni di flusso d'aria mai presentate in letteratura, col principale obiettivo di definire gli effetti dei moti convettivi sulle prestazioni dello stoccaggio. In un primo momento sono stati confrontate soltanto diverse configurazioni di valvole, in seguito anche diverse strutture interne al letto di rocce, ossia passando da un letto riempito solamente con rocce ad una configurazione con degli strati di isolamento nella direzione assiale volti ad evitare i moti convettivi all'interno del letto di rocce. Sono stati definiti dei parametri di interesse con la finalità di comparare diverse configurazioni, principalmente in termini di efficienze energetiche ed exergetiche durante le fasi di carica e scarica, e in prospettiva complessiva. È stata sviluppata una ricostruzione tridimensionale del profilo di temperatura nel letto di rocce attraverso l'interpolazione dei valori di temperatura registrati durante gli esperimenti per mezzo di un modello già esistente, la cui validazione per l'apparato sperimentale corrente è stata riportata. Il calcolo delle perdite di calore è stato condotto attraverso l'elaborazione dei dati sperimentali. È stata prodotta la validazione dell'analogia elettrica monodimensionale per la stima delle perdite di calore attraverso le pareti per mezzo di misurazioni IR. Sono stati riportati grafici riguardanti perdite di calore, stoccaggio di calore, recupero di calore con la finalità di investigare la loro evoluzionne nel tempo. Per quanto riguarda la modellizzazione, è stato implementato un modello bidimensionale come strumento di simulazione del comportamento del letto di rocce durante la fase di carica in due diverse configurazioni. È stata fornita una descrizione della geometria, delle equazioni e della strategia di risoluzione adottata. Sono state considerate proprietà termo-fisiche variabili sia per l'aria che per le rocce, con il fine di permettere un buon accordo tra dati sperimentali e risultati del modello. Il software utilizzato per la risoluzione del modello è COMSOL Multiphysics 5.3. Sono riportati i risultati delle simulazioni in termini di distribuzione di calore e percorso del flusso d'aria all'interno del letto di rocce a differenti istanti temporali. Infine, il modello è stato validato per mezzo dei dati sperimentali. È stato condotto un confronto tra i risultati ottenuti e la letteratura e sono state presentate delle conclusioni riguardanti la configurazione orizzontale, insieme a dei suggerimenti per lavori futuri.
Experimental characterization and modeling of high temperature thermal energy storage in rock beds
MARONGIU, FABRIZIO
2017/2018
Abstract
The role of this work is to provide an experimental characterization and modeling of high temperature thermal energy storage in rock bed. As regards the experimental activity, tests were performed on a rock bed of 1.5 m^3 capacity. The storage material was decided to be Swedish Diabase crushed rocks, with dimensions in the range 20-40 mm. The working temperature was approximately 600°C. Several configurations of air flows never presented in literature were tested, with the main focus on defining buoyancy effects on the performance of the storage. Firstly, only different valve configurations were compared, then also a different inner structure of the rock bed, namely switching from a bed filled only with rocks to a configuration with insulation layers on the axial direction to prevent buoyancy effects. Figures of merit were defined in order to compare different setups mainly in terms of energy and exergy efficiencies during charge and discharge phases, and in overall perspective. A 3D reconstruction of the temperature profile inside the rock bed was performed by interpolating temperature values logged during tests by means of an already existing model, whose validation for the current setup is provided. Estimation of heat losses was performed by post-processing experimental data. Validation of the 1D electrical analogy for the calculation of heat losses through the walls was performed by means of IR measurements. Graphs concerning heat losses, heat storage and heat recovery were plotted in order to investigate their evolution in time. As far as the modeling activity is concerned, a 2D model was implemented as a simulation tool for the behavior of the rock bed during the charge phase in different configurations. A description of the geometry, of the equations considered and of the solving strategy is given. Variable thermo-physical properties are considered for both air and rocks, in order to enable a good matching between model analysis and experimental data. The software used for the solution of the model is COMSOL Multiphysics 5.3. Results of the simulations are shown in terms of heat distribution and air flow path in the rock bed at different time steps. Eventually, the model was validated by means of experimental results. A comparison of the obtained results with literature was performed and conclusions regarding the horizontal setup were drawn, along with the presentation of suggestions for future works.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
non accessibile
Descrizione: Thesis text
Dimensione
23.42 MB
Formato
Adobe PDF
|
23.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142507