This work focuses of an investigation of paraffin-based fuels for hybrid rocket propulsion. The investigated materials range from a pure micro-crystalline paraffin wax (W1) to formulations where the paraffin is blended with a reinforcing polymer. The paraffin reinforcement is necessary to improve the starting alkane mechanical properties (unsuitable for applications to large launch systems). Nevertheless, the blend composition should avoid the suppression of the melted fuel entrainment, that is crucial to achieve the high regression rate (rf) of paraffin-based fuels. Based on a preliminary analysis, in this work, reinforcing polymer mass fractions ranged from 2.5 to 10% (by weight). The performed analyses started with an evaluation of the melt layer viscosity of the tested formulations, that was performed under the reference temperature of 150 °C, in a plate-plate rheometer. The fuel exhibiting the lowest viscosity was W1, while the formulations S2.5W1 (2.5% reinforcing polymer) and S10W1 (10% reinforcing polymer) showed percent viscosity increases over the pure paraffin of 40 and 620% respectively. In order to get a better insight of the combustion processes of the tested fuels, the decomposition kinetics of W1 and of the paraffin-reinforcing polymer blends were investigated by dedicated differential scanning calorimetry (DSC)thermogravimetric (TG) analyses performed in Ar and in air, with linear heating rates in the range 2.5 °C/min to 20 °C/min. In particular, the TG traces were treated with three different integral isoconversional methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Ortega’s) to evaluate the kinetic parameters required to perform kinetic predictions as conversion rates and lifetimes. Concerning the thermal degradation in inert atmosphere and results obtained with Ortega’ s approach, the predicted time required to reach the 90% of the overall mass loss experienced by W1 (i.e., the lifetime related to the 90% of its mass conversion) is estimated to be 6.7 s at 650 °C. A decreasing trend with increasing polymer content in the blend was observed, reaching a lifetime prediction of 0.4 s for the 90% mass loss of S10W1. The average conversion rates estimated for the formulations were found to scale accordingly to the lifetimes predictions. Following the pre-burning characterization of the investigated formulations, a ballistic analysis was carried, testing the fuels with a lab-scale hybrid motor. The relative ballistic grading of the formulations was enabled by similar conditions of combustion chamber pressure and oxidizer mass flux during the burning tests. Results showed the highest rf values for the formulation featuring the lowest melt viscosity in the pre-burning analysis. In particular, W1 featured a 200% increment in rf compared to a hydroxyl-terminated polybutadiene (HTPB) baseline. The augment of polymer content in the fuel blends was observed to cause a decrease in rf, suggesting the hampering of the entrainment phenomenon due to the rise in the fuel melt viscosity. The S10W1 formulation showed the lowest rf increment over the baseline. Combustion efficiency exhibited a trend with the blend polymer content opposite to that of rf.
Questo lavoro si concentra sulla indagine di combustibili a base paraffnica per la propulsione ibrida a razzo. I materiali studiati vanno da una pura cera paraffnica microcristallina (W1) a formulazioni in cui la paraffina `e miscelata con polimeri di rinforzo. Il rinforzo è necessario al fine di incrementare le proprietà meccaniche della cera pura (inadatte per applicazioni in grandi lanciatori). Cionondimeno, la composizione di una miscela deve essere tale da evitare la soppressione dell’ inglobamento nel flusso ossidante di combustibile fuso (entrainment), il quale risulta cruciale per il raggiungimento degli alti ratei di regressione (rf) dei combustibili a base paraffinica. Basandosi su una analisi preliminare, in questo lavoro, le frazioni in massa di rinforzo polimerico considerate vanno dal 2.5 al 10%. Le analisi condotte sono iniziate con la valutazione della viscosità del combustibile fuso per le diverse formulazioni, misurata ad una temperatura di 150°C con un reometro a piatti paralleli. Il combustibile con la minor viscosità è risultato W1, mentre S2.5W1 (2.5% di rinforzo polimerico) e S10W1 (10% di rinforzo polimerico) hanno mostrato incrementi di viscosità rispetto a W1 nell’ ordine del 40 e del 620% rispettivamente. Per avere una migliore visione dei processi di combustione dei diversi combustibili, la cinetica di decomposizione di W1 e delle miscele paraffina-polimero è stata studiata attraverso delle misurazioni di calorimetria differenziale a scansione (DSC)-termogravimetria (TG) condotte in argon e aria, con ratei di riscaldamento da 2.5 a 20 °C/min. In particolare, le tracce TG sono state analizzate attraverso tre metodi isoconversionali (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose, e Ortega) per valutare i parametri cinetici necessari a stimare ratei di conversione e previsioni di durata (lifetime). Considerando la degradazione termica in atmosfera inerte e i risultati ottenuti con il metodo di Ortega, il tempo previsto per il raggiungimento del 90% della perdita di massa totale mostrata da W1 (cioè, la lifetime di W1 relativa al 90% di conversione) è stimato in 6.7 s a 650 °C. Si è osservato un andamento decrescente della lifetime con il contenuto di polimero nelle formulazioni, raggiungendo una stima di durata di 0.4 s per il 90% di conversione di S10W1. I ratei di conversione medi stimati sono in accordo con le previsioni di durata. A seguito dell’ analisi pre-burning, si è effettuato lo studio della balistica delle formulazioni con un motore ibrido in scala ridotta. Le condizioni omogenee di pressione e flusso massico di ossidante riscontrate durante le prove hanno permesso il confronto tra i diversi combustibili. Il più alto rf si è osservato con la formulazione che ha mostrato la minor viscosità nelle prove reologiche. Nello specifico, W1 ha mostrato un aumento del 200% rispetto al combustibile di riferimento rappresentato dal polibutadiene a terminazione ossidrilica (HTPB). L’ aumento di contenuto polimerico nelle miscele ha dimostrato di causare la riduzione di rf, suggerendo come un aumento della viscosità possa ostacolare il fenomeno dell’ entrainment. Il minor incremento di rf a confronto con il riferimento si è ottenuto con S10W1. L’ efficienza di combustione ha evidenziato un andamento con il contenuto di polimero inverso a quello del rf.
Paraffin-based fuels : rheology, decomposition kinetics, and combustion behaviour
BIANCHI, RICCARDO
2017/2018
Abstract
This work focuses of an investigation of paraffin-based fuels for hybrid rocket propulsion. The investigated materials range from a pure micro-crystalline paraffin wax (W1) to formulations where the paraffin is blended with a reinforcing polymer. The paraffin reinforcement is necessary to improve the starting alkane mechanical properties (unsuitable for applications to large launch systems). Nevertheless, the blend composition should avoid the suppression of the melted fuel entrainment, that is crucial to achieve the high regression rate (rf) of paraffin-based fuels. Based on a preliminary analysis, in this work, reinforcing polymer mass fractions ranged from 2.5 to 10% (by weight). The performed analyses started with an evaluation of the melt layer viscosity of the tested formulations, that was performed under the reference temperature of 150 °C, in a plate-plate rheometer. The fuel exhibiting the lowest viscosity was W1, while the formulations S2.5W1 (2.5% reinforcing polymer) and S10W1 (10% reinforcing polymer) showed percent viscosity increases over the pure paraffin of 40 and 620% respectively. In order to get a better insight of the combustion processes of the tested fuels, the decomposition kinetics of W1 and of the paraffin-reinforcing polymer blends were investigated by dedicated differential scanning calorimetry (DSC)thermogravimetric (TG) analyses performed in Ar and in air, with linear heating rates in the range 2.5 °C/min to 20 °C/min. In particular, the TG traces were treated with three different integral isoconversional methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Ortega’s) to evaluate the kinetic parameters required to perform kinetic predictions as conversion rates and lifetimes. Concerning the thermal degradation in inert atmosphere and results obtained with Ortega’ s approach, the predicted time required to reach the 90% of the overall mass loss experienced by W1 (i.e., the lifetime related to the 90% of its mass conversion) is estimated to be 6.7 s at 650 °C. A decreasing trend with increasing polymer content in the blend was observed, reaching a lifetime prediction of 0.4 s for the 90% mass loss of S10W1. The average conversion rates estimated for the formulations were found to scale accordingly to the lifetimes predictions. Following the pre-burning characterization of the investigated formulations, a ballistic analysis was carried, testing the fuels with a lab-scale hybrid motor. The relative ballistic grading of the formulations was enabled by similar conditions of combustion chamber pressure and oxidizer mass flux during the burning tests. Results showed the highest rf values for the formulation featuring the lowest melt viscosity in the pre-burning analysis. In particular, W1 featured a 200% increment in rf compared to a hydroxyl-terminated polybutadiene (HTPB) baseline. The augment of polymer content in the fuel blends was observed to cause a decrease in rf, suggesting the hampering of the entrainment phenomenon due to the rise in the fuel melt viscosity. The S10W1 formulation showed the lowest rf increment over the baseline. Combustion efficiency exhibited a trend with the blend polymer content opposite to that of rf.File | Dimensione | Formato | |
---|---|---|---|
MSc thesis Bianchi.pdf
solo utenti autorizzati dal 13/09/2021
Descrizione: Testo della tesi.
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
MSc Thesis Bianchi def.pdf
solo utenti autorizzati dal 18/09/2021
Descrizione: Testo definitivo della tesi
Dimensione
4.93 MB
Formato
Adobe PDF
|
4.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142569