The objective of the present work is the evaluation of the aging effect on the reactivity of aluminum nanopowders. Four nano-sized Al (nAl) powders produced by electrical explosion of wires were tested. The investigated materials are passivated by air and feature nominal particle diameters of 40 nm (n40c and n40us), 100 nm (n100) and 200 nm (n200). All the fresh powders were characterized before the aging studies. The performed analyses included: size distribution, morphology, structure, composition and reactivity. Scanning electron microscopy (SEM) images of the fresh samples showed that powders n40us and n100 mostly consist of spherical particles, while the presence of elements with sharp sides was detected for powders n40c and n200. The latter in particular mostly consists of prism shaped particles. Marked clustering tendency was common to all powders. Transmission electron microscopy (TEM) images showed a particle structure composed of a central, crystalline aluminum core sorrounded by an amorphous alumina shell. The measured average thickness is about 5.5 nm for all powders. The aluminum content (CAl) was evaluated by a volumetric method, obtaining values that range from 69 wt.% (n200) to 85.5 wt.% (n100). The powders composition was determined by X-ray diffraction (XRD). For powders n40us and n100 the only detected crystalline phase was aluminum. A fraction of crystalline AlOOH was detected in samples of n40c (5 wt.%) and n200 (10 wt.%). Low heating rate thermogravimetry (TG) tests were performed in air at 10 and 20 K/min. The two steps oxidation mechanism of the powders was evidenced. Results show that powders with lower nominal size feature lower onset temperatures and a more complete conversion of Al into Al2O3 during the low temperature oxidation. Samples of powder n200 experienced a consistent mass loss before oxidation, due to dehydration of the oxide shell. Powders have been subjected to accelerated aging in controlled conditions of temperature and relative humidity (RH). Humidity was fixed by means of supersaturated salt solutions. Long-term and short-term aging tests were performed. Long-term aging tests have been performed on powder n100: it has been aged for up to 6 months at 277 and 298 K, 75% RH. The tested conditions did not produce significant effects in terms of composition and reactivity. Short-term aging tests were performed on all four powders, at 333 K, 75% RH. Samples of n40c and n40us experienced complete conversion into Al(OH)3 in less than 24 hours, while it took 96 hours for the n100 samples. The conversion of n200 slowed down after 72 hours, reaching a plateau with only 40 wt.% of core Al converted into Al(OH)3. The reactivity of the aged samples was tested by TG in air at 10 and 20 K/min. A condition of incipient aging (10-15% of conversion) and a condition of advanced aging (about 43% of conversion) were tested and compared to the results of the fresh powders. As the aging proceeds, the mass loss before the first oxidation increases, while the mass gained during the oxidations reduces. The rate of mass increase during the two oxidations is greatly reduced by the aging.
L'obiettivo del presente lavoro è valutare l'effetto dell'invecchiamento sulla reattività delle nanopolveri di alluminio. Sono state studiate quattro polveri nanometriche di alluminio (nAl) prodotte tramite esplosione di filo elettrico. Tali polveri sono state passivate in aria, con diametri nominali delle particelle di 40 nm (n40c e n40us), 100 nm (n100) e 200 nm (n200). Tutte le polveri studiate sono state caratterizzate prima delle prove di invecchiamento. Le analisi effettuate includono: valutazione statistica delle dimensioni, morfologia, struttura, composizione e reattività. Le immagini SEM dei campioni hanno mostrato che le polveri n40us e n100 sono prevalentemente composte da particelle sferiche, mentre è stata rilevata la presenza di elementi con spigoli nelle polveri n40c e n200. In particolare quest'ultima è composta quasi interamente da particelle di forma prismatica. Tutte le polveri dimostrano una marcata tendenza alla formazione di coacervi. Le immagini TEM delle particelle mostrano una struttura composta da un nucleo centrale di alluminio cristallino, circondato da uno strato amorfo di allumina. Lo spessore medio di tale strato è di circa 5.5 nm per tutte le polveri. Il contenuto di alluminio attivo (CAl) è stato misurato con un metodo volumetrico, ottenendo valori compresi tra il 69 wt.% (n200) e il 85.5 wt.% (n100). La composizione delle polveri è stata determinata per mezzo di scansioni a diffrazione di raggi X (XRD). Nelle polveri n40us e n100 è stato rilevato unicamente l'alluminio come fase cristallina. Una frazione cristallina di AlOOH è stata rilevata nei campioni di n40c (5 wt.%) e n200 (10 wt.%). La termogravimetria a basso rateo di riscaldamento (TG) ha sottolineato il meccanismo di ossidazione a due stadi delle polveri. Sono state effettuate scansioni in aria a 10 e 20 K/min. I risultati mostrano che le polveri più fini sono caratterizzate da una minori temperature di onset e da una maggiore conversione di Al in Al2O3 durante le ossidazioni. I campioni di polvere n200 hanno esibito una considerevole perdita di massa prima dell'ossidazione, dovuta alla deidratazione dello strado di ossido. Le polveri sono state sottoposte ad invecchiamento accelerato in condizioni di temperatura e umidità relativa (RH) controllate. L'umidità è stata fissata per mezzo di soluzioni saline soprasature. Sono stati effettuati test di invecchiamento di lungo periodo e di breve periodo. I test di invecchiamento di lungo periodo sono stati eseguiti sulla polvere n100, alle temperature di 277 e 298 K, 75% RH, per un tempo massimo di 6 mesi. Le condizioni testate non hanno prodotto effetti rilevanti in termini di composizione e reattività. I test di invecchiamento di breve periodo sono stati effettuati su tutte le polveri, alla temperatura di 333 K, 75% RH. I campioni di n40c e n40us risultavano completamente convertiti in Al(OH)3 in meno di 24 ore, mentre la polvere n100 ha impiegato circa 96 ore. La conversione dei campioni di n200 rallenta dopo le prime 72 ore, per poi fermarsi con una conversione del 40 wt.% di alluminio in Al(OH)3. La reattività dei campioni invecchiati è stata testata per mezzo di termogravimetria a basso rateo di riscaldamento in aria, a 10 e 20 K/min. Una condizione di invecchiamento incipiente (10-15% di conversione) e una di invecchiamento avanzato (circa 43% di conversione) sono state studiate e confrontate con i risultati ottenuti per le polveri non invecchiate. Con il procedere dell'invecchiamento, la perdita di massa prima dell'ossidazione aumenta, mentre l'aumento di massa durante l'ossidazione stessa si riduce. Il rateo di aumento di massa durante le ossidazioni è molto ridotto dall'invecchiamento.
Low heating rate reactivity of aged nanoaluminum powders
ALÒ, ALESSIO
2017/2018
Abstract
The objective of the present work is the evaluation of the aging effect on the reactivity of aluminum nanopowders. Four nano-sized Al (nAl) powders produced by electrical explosion of wires were tested. The investigated materials are passivated by air and feature nominal particle diameters of 40 nm (n40c and n40us), 100 nm (n100) and 200 nm (n200). All the fresh powders were characterized before the aging studies. The performed analyses included: size distribution, morphology, structure, composition and reactivity. Scanning electron microscopy (SEM) images of the fresh samples showed that powders n40us and n100 mostly consist of spherical particles, while the presence of elements with sharp sides was detected for powders n40c and n200. The latter in particular mostly consists of prism shaped particles. Marked clustering tendency was common to all powders. Transmission electron microscopy (TEM) images showed a particle structure composed of a central, crystalline aluminum core sorrounded by an amorphous alumina shell. The measured average thickness is about 5.5 nm for all powders. The aluminum content (CAl) was evaluated by a volumetric method, obtaining values that range from 69 wt.% (n200) to 85.5 wt.% (n100). The powders composition was determined by X-ray diffraction (XRD). For powders n40us and n100 the only detected crystalline phase was aluminum. A fraction of crystalline AlOOH was detected in samples of n40c (5 wt.%) and n200 (10 wt.%). Low heating rate thermogravimetry (TG) tests were performed in air at 10 and 20 K/min. The two steps oxidation mechanism of the powders was evidenced. Results show that powders with lower nominal size feature lower onset temperatures and a more complete conversion of Al into Al2O3 during the low temperature oxidation. Samples of powder n200 experienced a consistent mass loss before oxidation, due to dehydration of the oxide shell. Powders have been subjected to accelerated aging in controlled conditions of temperature and relative humidity (RH). Humidity was fixed by means of supersaturated salt solutions. Long-term and short-term aging tests were performed. Long-term aging tests have been performed on powder n100: it has been aged for up to 6 months at 277 and 298 K, 75% RH. The tested conditions did not produce significant effects in terms of composition and reactivity. Short-term aging tests were performed on all four powders, at 333 K, 75% RH. Samples of n40c and n40us experienced complete conversion into Al(OH)3 in less than 24 hours, while it took 96 hours for the n100 samples. The conversion of n200 slowed down after 72 hours, reaching a plateau with only 40 wt.% of core Al converted into Al(OH)3. The reactivity of the aged samples was tested by TG in air at 10 and 20 K/min. A condition of incipient aging (10-15% of conversion) and a condition of advanced aging (about 43% of conversion) were tested and compared to the results of the fresh powders. As the aging proceeds, the mass loss before the first oxidation increases, while the mass gained during the oxidations reduces. The rate of mass increase during the two oxidations is greatly reduced by the aging.File | Dimensione | Formato | |
---|---|---|---|
Alo_tesi_2018.pdf
solo utenti autorizzati dal 25/09/2021
Dimensione
14.01 MB
Formato
Adobe PDF
|
14.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142574