Small Solar System Bodies (SSSB) are supposed to be the best-preserved bodies since the Big-Bang. Their exploration and analysis is then of primary importance for studying the evolution and formation of the Solar System. In order to improve the results obtained by Rosetta mission, Airbus GmbH proposed Astrone concept (patent pending): it consists in a hovering lander which is able to hover above the surface of the body, by means of electric ion-thrusters, in order to perform science activities in different places. The drawbacks of this concept are the limitations inherent to the thrusters: electrical power and fuel needed to operate. To overcome these limitations E-Astrone concept has been proposed: hovering is obtained by electrostatic repulsion between the asteroid surface, which is naturally charged by the solar wind, and the lander. Active charge control has been considered for both spacecraft and the asteroid surface underneath, to increase the lifting force magnitude and reduce the influence of environmental conditions. This thesis analyses the basic principles underneath the concept, assessing its feasibility and its possible benefits for science outcomes increase: electrostatic environment of airless bodies have been analyzed, so its interaction with the S/C: active soil charging showed beneficial from power considerations. It has been proved that E-Astrone concept leads to lower power and fuel consumption, with respect to the Astrone concept, resulting in higher scientific returns, while it suffers the uncertainties related to the asteroid environment. A first-iteration system design has been proposed based on the findings related to the interaction between spacecraft and environment.
Si suppone che gli Small Solar System Bodies (SSSB) siano gli oggetti meglio preservati a partire dal Big Bang. La loro analisi ed esplorazione e quindi di primaria importanza per lo studio dell’evoluzione del sistema solare. Al fine di migliorare i risultati ottenuti dalla missione Rosetta, Airbus GmbH ha sviluppato il progetto Astrone (brevettato): consiste in un lander capace di levitare al di sopra della superficie dell’asteroide grazie a dei motori ionici, così da poter effettuare analisi scientifiche in diversi punti. Le limitazioni dovute ai motori (carburante, energia elettrica) riducono le possibilità di spostamento. Al fine di superare queste problematiche è stato proposto il progetto E-Astrone: la levitazione è ottenuta grazie alla repulsione elettrostatica tra il suolo dell’asteroide, naturalmente caricato dall’azione del vento solare, e il lander. Un controllo attivo delle cariche presenti su il lander e il suolo sottostante è stato considerato come metodo per aumentare la forza portante e ridurre l’influenza delle condizioni ambientali. Questa tesi analizza i principi fisici su cui si basa il progetto, attestandone la fattibilità e i possibili benifici al fine di aumentare il ritorno scientifico. L’ambiente, dal punto di vista elettrostatico, degli SSSB è stato analizzato, così come la sua interazione con la S/C: il controllo attivo delle cariche sul suolo si è dimostrato efficace nel ridurre i consumi. È stato inoltre provato che il concetto E-Astrone garantisce un minore consumo di energia e di carburante rispetto ad Astrone, generando un maggiore ritorno scientifico, mentre soffre le incertezze relative alle caratteristiche ambientali. Un design preliminare è stato proposto basandosi sulle analisi relative all’interazione tra lander e ambiente.
System architecture design of an active electrostatic spacecraft for airless bodies
UBERTI, GIANLUCA
2017/2018
Abstract
Small Solar System Bodies (SSSB) are supposed to be the best-preserved bodies since the Big-Bang. Their exploration and analysis is then of primary importance for studying the evolution and formation of the Solar System. In order to improve the results obtained by Rosetta mission, Airbus GmbH proposed Astrone concept (patent pending): it consists in a hovering lander which is able to hover above the surface of the body, by means of electric ion-thrusters, in order to perform science activities in different places. The drawbacks of this concept are the limitations inherent to the thrusters: electrical power and fuel needed to operate. To overcome these limitations E-Astrone concept has been proposed: hovering is obtained by electrostatic repulsion between the asteroid surface, which is naturally charged by the solar wind, and the lander. Active charge control has been considered for both spacecraft and the asteroid surface underneath, to increase the lifting force magnitude and reduce the influence of environmental conditions. This thesis analyses the basic principles underneath the concept, assessing its feasibility and its possible benefits for science outcomes increase: electrostatic environment of airless bodies have been analyzed, so its interaction with the S/C: active soil charging showed beneficial from power considerations. It has been proved that E-Astrone concept leads to lower power and fuel consumption, with respect to the Astrone concept, resulting in higher scientific returns, while it suffers the uncertainties related to the asteroid environment. A first-iteration system design has been proposed based on the findings related to the interaction between spacecraft and environment.File | Dimensione | Formato | |
---|---|---|---|
main_tesi.pdf
non accessibile
Descrizione: Tesi completa
Dimensione
9.62 MB
Formato
Adobe PDF
|
9.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142578