ABSTRACT INTRODUCTION Cardiovascular diseases (both congenital and acquired) affect an increasing percentage of world population. Most of the observed heart diseases concern valves, and primarily the mitral and the aortic valves (compared to the pulmonary and tricuspid ones) as the left part of the heart is subject to greater pressures. Morphological and functional alterations that may affect the valves are divided in three major categories: • Insufficiency: it occurs when the valve does not close completely in a hermetic way, causing a retrograde blood flow. • Stenosis: it takes place when the valve orifice narrows due to a fusion of the edges of the flaps (called commissures); this condition causes accumulation of incoming blood and a consequent dangerous increase in blood pressure. • Steno-insufficiency; this is a situation in which both above conditions occur. All these abnormalities can be life-threatening for the patient and thus require periodic monitoring, detailed controls and, in some cases, urgent interventions. Thanks to scientific progress that has been witnessed in the last decades, different techniques and surgical procedures have been developed for the replacement of cardiac stenotic and insufficient valves. The pathological valve is replaced with a prosthetic valve, which can be both biological or mechanical; it has been registered that the number of implants of one type with respect to the other is rather similar and comparable. In the case of biological valves, the device is made of materials of biologic origin (adequately treated pork and bovine tissues) with a metallic or polymeric structure able to support and give the proper shape to perform the necessary anatomic function. On the contrary, the mechanical prosthetics are uniquely made of synthetic materials and are generally made up of several movable components bound together and fixated at the heart tissue. Comparing the two categories, we can affirm that biological prosthetics are more patient-friendly since the recipient will not have to undergo an anticoagulant therapy; on the other hand, these valves are less long-term performant due to degradation and calcification the natural materials are subjected to. Trying to solve the set of problems provided by both categories, research is moving towards tissue engineering with the development of support structures called scaffolds (often being biodegradable or bioresorbable) on which patient’s own cells are sown and made to proliferate. In this field there are two possible approaches for the scaffold production: through the realization of a valve from biological components (obtained from a human or animal donor that is previously decellularized and then reseeded with patient’s own cells) or by building a new synthetic valve using polymeric materials with different modalities and processes. Among the techniques that allow to obtain a structure to support cell culture, is electrospinning: this allows to build a customized scaffold in relation to the material, design and functional properties needed. The electrospinning technique allows a nanometric filament to be extruded and deposited on a two dimensional or three-dimensional shape (depending on the application needed). The deposition starts when the syringe needle, the spinneret, and the supporting structures, the collector, are positioned at two poles of opposing charge of a high-tension generator; the charge difference itself allows the outgoing material from the syringe to be attracted and thus deposited on the collector. The material used to electrospin is a solution with natural and synthetic polymers, eventually dissolved in solvents that bring them to the liquid state. In the following thesis work, a valve scaffold has been realized through the electrospinning process, in a way to optimize materials and production processes. MATERIALS AND METHODS The valves under analysis have been realized electrospinning solutions based on both pork gelatin type A and bovine gelatin type B, testing both at different concentrations. Being the purpose of the work to develop valve scaffolds with a three-dimensional geometry, a dynamic set-up has been adopted, provided with a rotational engine to which the collector was then connected in such a way that the whole collector surface of the collector was equally exposed (perpendicularly) to the flow. The electrospinning solution was delivered thanks to a syringe pump with adjustable flowrate in terms of ml/h. The selected and used collectors had four different geometries, all being three-dimensional but progressively more complex in order to allow a gradual and methodical optimization of the electrospinning parameters; the used shapes were rods (4 cm in length and 6 mm in diameter), bars (same diameter and 24 cm in length), a rotating cylinder (18,5 cm in length and 13 cm in diameter) and a valve shape (diameter of 2 cm). During the optimization phase of the electrospinning parameters, both the macroscopic morphology of the deposit visible to the naked-eye and the microscopic structure of the fibers were observed; particularly, the structure has been observed by mean of scanning electron microscope (SEM). This technique has also been used during the following electrospun matrices reticulation phase. Since it was necessary to make the fibers resistant and stable in an aqueous environment (and thus be able to simulate physiological conditions), chemical reticulation treatments were carried out. Solutions based on EDC and NHS in ethanol, acetonitrile and ethyl acetate were prepared for this goal; for each of them, various concentrations of EDC/NHS were tested. For results investigation, the specimens have been observed under SEM and degradation tests were carried. First analysis was aimed to observe the fibers morphological variations, the influence of the physical tension exerted during the immersion of specimens in the cross-linking solution and the effect of the drying technique; the second test was carried submerging the reticulated samples in PBS solution and 0,02% sodium azide at T=37°C ± x and weighing them after a time point of 1 hour, 48 hours and 7 days. Samples of gelatin A with sacrificial PEO were also electrospun. Dissolving the second element by immersion in acetonitrile, it was possible to maintain the structure of gelatin A but with a greater porosity. Once the reticulation process was optimized, biological characterization tests were carried out using HeLa, L929, EA.hy926 and SHSY5Y cells. In this work different test were performed: • Indirect cytotoxicity tests between reticulated samples with EDC and NHS, with glutaraldehyde vapors and with glutaraldehyde solution to compare different cross-linking processes and evaluate preconditioning effect. • Sowing tests in co-culture by placing endothelial cells and fibroblasts respectively on both sides of a suspended matrix (thus simulating the anatomical and physiological condition); for this purpose, set-ups were made with 3D printing. • Migration tests to investigate the speed of colonization of the matrices by the cells; in this case as well the set-ups were designed 3D printed. • Immunohistochemical analysis on samples sown for 7 days observing the modalities and entities of cell growth on them. In order to evaluate the mechanical properties of gelatin A, force ramp tensile tests were carried with DMA on both dry (reticulated and non-reticulated) and sown samples. As a final aspect of the evaluation, a bioreactor was designed to allow the electrospun valve to be tested within a pulsatile flow. RESULTS AND DISCUSSION The electrospinning process of gelatin A and gelatin B was optimized to identify the appropriate set of parameters for obtaining samples with homogeneous deposits, free from defects and with regular fibres. To optimize the reticulation process, EDC/NHS solutions were tested in different solvents, with different molarities and with variable sample immersion times. Observing the samples by SEM before the chemical treatment, after immersion in cross-linking solution, after immersion in water of the reticulated sample and after the degradation tests, the most suitable method was proved to be the one with 50 mM EDC and NHS in acetonitrile for a duration of 8 hours and with very slow and gradual drying; this particular combination allowed in fact to reinforce gelatin and to partially preserve its fibrous structure even after 7 days immersion in culture media. Thanks to the results of the degradation tests, it was also possible to verify that, between the two types of gelatin, type A is the best in terms of degradation because it shows the lowest loss of weight after immersion in saline solution for 7 days (equal to 10% of the initial weight). To demonstrate the effectiveness of cross-linking, DMA (Dynamic Mechanical Analysis) tests were also carried out; this analysis gave important confirmation of the improvement in the mechanical properties of the matrices following the cross-linking. To optimize the electrospinning of gelatin A with sacrificial PEO, a double spinneret set-up was built; needles were placed in the same direction, one opposite to the other and perpendicular to the axis of the collector. After electrospinning, the samples were immersed in acetonitrile for 4 hours in order to dissolve the PEO fibers (Gelatin AP). Indirect cytotoxicity tests on cross-linking methods confirmed the method validity of reticulation with EDC/NHS; in fact, already after the first hour of preconditioning, the eluates did not show any toxicity guaranteeing a cellular vitality almost equal to 100%. The co-culture experiments were carried out by printing in 3D a set-up that kept the sample suspended. One cell type at a time (EA.hy926 and L929 cells) was sown reversing the sample between one step and the next. After detecting by SEM, a significant cell colonization 7 days after sowing, immunohistochemical analyses were carried out; these provided further confirmation that the matrices had been densely colonized. Migration tests were carried out with L929 cells on three different matrices (positioning them in a 48well plate): gelatin A, gelatin AP with increased porosity and PCL; control sample wells were also sown without any matrix. The set-up for this experiment consists of a stainless-steel rod and two nylon rings printed in 3D: the lower ring is intended to bind the matrix at the bottom of the well and the upper ring (that has arms and an additional inner ring) is used to support the rod that covers the area to be shielded with its diameter. After sowing the matrices and marking the cells with a fluorescent dye, the rods were removed and the cell advancement was observed with a fluorescence microscope at three different time-points: 0 hours, 4 hours and 3 days. The obtained results showed that gelatin A and gelatin AP with increased porosity promote cell adhesion and migration. Concerning the mechanical analysis, tests showed a better maintenance of thanks to cell presence on its surface. CONCLUSION Thanks to a careful design of a functional set-up and the optimization of the electrospinning parameters, it was possible to obtain samples of gelatin A and gelatin B with homogeneous deposit, regular fibers and extremely low presence of defects. The degradation tests allowed to define a cross-linking protocol was more effective and which type of gelatin was more performing in terms of fibrous structure preservation. This optimized cross-linking procedure has made it possible to increase the stability of the electrospun fibers in an aqueous environment and to increase the mechanical properties of the matrix. Biological characterization tests allowed to confirm the suitability of the electrospinning and cross-linking method for producing scaffolds; it has also been hypothesized from the results of the DMA that cell proliferation on the matrices may be able to compensate the loss of the matrix mechanical properties in the culture environment. The design of a bioreactor has led to the development of a system for the dynamic culture of the electrospun valves; this device is extremely simple, compact and seems to respect all sterility requirements.
SOMMARIO INTRODUZIONE Le patologie cardiovascolari (sia congenite che acquisite) interessano una percentuale sempre maggiore della popolazione mondiale. Gran parte delle malattie cardiache riscontrate interessano le valvole ed in particolare le valvole mitrali ed aortiche (rispetto a quelle polmonare e tricuspide) in quanto la emiparte sinistra del cuore è soggetta a pressioni maggiori. Le alterazioni morfologiche e funzionali che possono interessare le valvole vengono suddivise in tre categorie principali: • Insufficienza: si verifica quando la valvola non si chiude completamente provocando un flusso sanguigno retrogrado. • Stenosi: ha luogo nel momento in cui l’orifizio valvolare si restringe a causa di una fusione dei bordi dei lembi (detti commissure); questa condizione provoca un accumulo di sangue in entrata e un conseguente incremento pressorio, con pericolose conseguenze. • Steno-insufficienza: è una situazione in cui si verificano entrambe le condizioni sopra descritte. Tutte queste anomalie possono essere molto critiche per la salute del paziente e per questo motivo necessitano di monitoraggi periodici, approfonditi controlli e, in alcuni casi, interventi estremamente tempestivi. Grazie al progresso scientifico al quale si sta assistendo negli ultimi decenni, si sono sviluppate numerose tecniche e procedure chirurgiche per la sostituzione delle valvole cardiache stenotiche o insufficienti. La valvola patologica viene sostituita con una protesi valvolare la quale può essere biologica o meccanica; si è registrato che la quantità di impianti di un tipo rispetto all’altro è piuttosto simile e comparabile. Nel caso della valvola biologica il dispositivo è appunto costituito da materiali di origine biologica (tessuti porcini o bovini opportunamente trattati) con una struttura di metallo o polimero che sostenga e dia la forma necessaria per svolgere la funzione anatomica necessaria. La protesi meccanica, invece, è formata unicamente da materiali sintetici ed è generalmente fatta di più parti mobili vincolate tra loro e fissate al tessuto cardiaco. Dovendo porre le due categorie a confronto, si può affermare che le protesi biologiche siano più patient-friendly in quanto non costringono il portatore a sottoporsi ad una terapia farmacologica anti-coagulante; dall’altro lato però queste risultano essere meno performanti a lungo termine a causa della degradazione e calcificazione a cui sono inevitabilmente soggetti i materiali non sintetici da cui sono composte. Proprio per cercare di ovviare alle problematiche presentate da entrambe le categorie, la ricerca si sta muovendo verso l’ingegneria tissutale con lo sviluppo di strutture di supporto dette scaffold (spesso biodegradabili o bioriassorbibili) sulle quali si seminano e fanno proliferare cellule del paziente stesso. In tale ambito due sono gli approcci possibili per la produzione di uno scaffold valvolare: tramite la realizzazione di una valvola di derivazione biologica (ottenuta da un donatore umano o animale che viene preventivamente decellularizzata e poi riseminata con cellule del paziente) oppure costruendo una valvola sintetica de novo lavorando materiali polimerici attraverso diverse modalità e processi. Tra le tecnologie che consentono di ottenere una struttura di supporto per la coltura cellulare vi è l’electrospinning; questo processo permette di costruire uno scaffold personalizzato a livello di scelta del materiale, progettazione della forma e delle caratteristiche funzionali. Il processo di elettrofilatura consente di estrudere un filamento nanometrico e di farlo depositare su di una forma sia bidimensionali che tridimensionali (in base alla necessità applicativa). La deposizione ha luogo nel momento in cui l’ago della siringa (detto spinneret) e la struttura di supporto per la deposizione (detta collettore) vengono collegate a due poli di carica opposta di un generatore ad alta tensione; è proprio la differenza di carica che permette al materiale uscente dalla siringa di essere attirato e quindi depositato sul collettore. Il materiale adoperato per l’electrospinning è una soluzione con polimeri naturali o sintetici eventualmente disciolti in solventi che li portano allo stato liquido. Nel presente lavoro di tesi si è realizzato uno scaffold valvolare tramite il processo di electrospinning andando, in particolar modo, ad ottimizzarne materiali e processi di produzione. MATERIALI E METODI Le valvole oggetto di studio sono state realizzate elettrofilando soluzioni sia a base di gelatina A porcina che gelatina B bovina, testando ognuna a diverse concentrazioni. Essendo lo scopo del lavoro appunto quello di sviluppare degli scaffold valvolari con geometria tridimensionale, si è impiegato un set-up di tipo dinamico provvisto di un motore rotazionale a cui è stato quindi collegato il collettore in modo che le facce di quest’ultimo venissero tutte ugualmente esposte (perpendicolarmente) al getto. L’erogazione della soluzione di elettrofilatura è stata effettuata tramite pompe a siringa con portata regolabile nell’ordine di ml/h. I collettori selezionati ed impiegati sono stati di quattro differenti geometrie, tutte tridimensionali ma man mano più complesse così da consentire un’ottimizzazione più graduale e metodica dei parametri di electrospinning; i quattro collettori adoperati avevano forma di cilindro corto (di lunghezza pari a 4 cm e diametro di 6 mm), di cilindro lungo (stesso diametro e lunghezza di 24 cm), di cilindro largo rotante (lungo 18,5 cm e con diametro di 13 cm) ed infine con forma valvolare (diametro pari a 2 cm). Per la fase di ottimizzazione dei parametri di elettrofilatura si è sia osservata la morfologia macroscopica del deposito visibile ad occhio nudo che indagato la struttura microscopica delle fibre; in particolar modo per osservarne la struttura ci si è avvalsi di un microscopio a scansione elettronica (SEM). Tale tecnica è stata utilizzata anche durante la successiva fase di reticolazione delle matrici elettrofilate. Essendo infatti necessario rendere le fibre resistenti e stabili in ambiente acquoso (e poter così simulare le condizioni fisiologiche) si sono effettuati trattamenti di reticolazione chimica. A tal fine sono state preparate soluzioni a base di EDC ed NHS in etanolo, acetonitrile ed acetato di etile; per ognuno si sono testate varie concentrazioni di prova. Per indagarne i risultati si sono osservati i campioni al SEM e si sono eseguite prove di degradazione. La prima analisi ha avuto come scopo quello di osservarne la variazione morfologica delle fibre, l’influenza della tensione fisica applicata durante l’immersione dei campioni nella soluzione reticolante e l’effetto della modalità di asciugatura; il secondo test è stato eseguito immergendo i campioni reticolati in soluzione di PBS e 0,02% di sodio azide a T=37°C ± x e pesandoli dopo time point di 1 ora, 48 ore e 7 giorni. In previsione di compiere prove di semina cellulare, si sono anche elettrofilati campioni di gelatina A con PEO sacrificale. Sciogliendo infatti il secondo elemento tramite immersione in acetonitrile, si è potuto mantenere la struttura di gelatina A ma con una maggiore porosità. Ottimizzato il processo di reticolazione, si sono eseguite prove di caratterizzazione biologica adoperando cellule HeLa, L929, EA.hy926 e SH-SY5Y. In particolare, si sono compiuti: • test di citotossicità indiretta tra campioni reticolati con EDC/NHS, con vapori di glutaraldeide e con soluzione di glutaraldeide per poter effettuare un confronto tra diversi processi di reticolazione e valutare l’effetto del precondizionamento; • prove di semina in co-coltura ponendo cellule endoteliali e fibroblasti rispettivamente sui due lati di una matrice sospesa; a tale scopo si sono realizzati set-up con la stampa 3D; • test di migrazione per indagare la velocità di colonizzazione delle matrici da parte delle cellule (anche in questo caso i set-up sono stati progettati e stampati in 3D); • analisi immunoistochimica su campioni seminati per 7 giorni osservando le modalità ed entità di crescita cellulare su di essi. Per valutare le proprietà meccaniche della gelatina A, si sono effettuate prove di trazione a rottura in rampa di forza con DMA sia su campioni asciutti (reticolati e non reticolati), sia su campioni seminati. Come ultimo aspetto di valutazione, si è progettato un sistema di coltura che consentisse di testare preliminarmente la valvola elettrofilata in un sistema più semplice di un circuito pulsatile. RISULTATI e DISCUSSIONE L’ottimizzazione del processo di elettrofilatura della gelatina A e della gelatina B ha permesso di individuare il set di parametri adeguati per ottenere campioni con depositi omogenei, privi di difetti e con fibre regolari. Per ottimizzare la reticolazione sono state testate soluzioni di EDC/NHS in diversi solventi, a differenti molarità e con tempi variabili di immersione del campione. Osservando i campioni al SEM prima del trattamento chimico, dopo l’immersione in soluzione reticolante, dopo immersione in acqua del campione reticolato e dopo le prove di degradazione, il metodo più soddisfacente si è rivelato essere quello con soluzione di EDC ed NHS in acetonitrile 50 mM per una durata di 8 ore e con asciugatura molto lenta e graduale; questa particolare combinazione ha permesso infatti di rinforzare la gelatina al punto che è stato possibile preservare, parzialmente, la struttura fibrosa perfino dopo immersione in mezzo di coltura per 7 giorni. Grazie ai risultati delle prove di degradazione si è anche potuto appurare che, tra i due tipi di gelatina, la A è quella migliore in termini di degradazione in quanto, con il metodo di reticolazione che si è dimostrato più efficace, mostra la minor perdita di peso dopo immersione in soluzione salina per 7 giorni (pari al 10% del peso iniziale). Per dimostrare l’efficacia della reticolazione sono stati effettuati anche test di DMA (Analisi Dinamica Meccanica), che hanno dato importanti conferme riguardo al miglioramento delle proprietà meccaniche delle matrici che segue la loro reticolazione. Per l’ottimizzazione dell’elettrofilatura di gelatina A con PEO sacrificale si è realizzato un set-up con due spinneret, che sono stati posti lungo la stessa direzione, uno opposto all’altro e perpendicolari all’asse del collettore. Terminata l’elettrofilatura, i campioni sono stati immersi in acetonitrile per 4 ore per consentire lo scioglimento delle fibre di PEO (Gelatina AP). L’ottimizzazione dei parametri ha portato ad ottenere campioni con una porosità maggiore. Le prove di citotossicità indiretta sui metodi di reticolazione hanno confermato la validità del metodo di reticolazione con EDC/NHS; infatti, già dopo la prima ora di precondizionamento, gli eluati non hanno mostrato alcuna tossicità garantendo una vitalità cellulare praticamente pari al 100%. Gli esperimenti di co-coltura sono stati effettuati stampando in 3D un set-up che tenesse sospeso il campione. Si è proceduto effettuando la semina di un tipo cellulare alla volta (cellule EA.hy926 e L929) e, tra un passaggio e l’altro, si è girato il campione. Dopo aver rilevato una notevole colonizzazione cellulare a 7 giorni dalla semina tramite microscopio ottico, si sono effettuate analisi di immunoistochimica; queste hanno fornito un’ulteriore conferma di quanto le matrici fossero state fittamente colonizzate. Le prove di migrazione sui diversi materiali sono state eseguite con cellule L929 sulle diverse matrici posizionate in pozzetti di una multiwell 48: gelatina A, gelatina AP con porosità aumentata e PCL; sono inoltre stati seminati dei pozzetti di campione senza alcun campione. Il set-up realizzato per compiere tale esperimento consiste in una barretta di acciaio inox e due anelli di nylon stampati in 3D: l’anello inferiore ha lo scopo di vincolare la matrice sul fondo del pozzetto e quello superiore (avente dei bracci con un ulteriore anello interno) serve per sostenere la barretta che va a coprire col suo diametro l’area da schermare. Dopo aver seminato le matrici e aver marcato le cellule con un colorante fluorescente vitale si sono quindi rimosse le barrette e osservato l’avanzamento cellulare con microscopio a fluorescenza a tre time-point differenti: 0 ore, 4 ore e 3 giorni. I risultati ottenuti hanno mostrato come la gelatina A e la gelatina AP con porosità aumentata promuovano l’adesione e la migrazione cellulare. Per quanto riguarda l’analisi meccanica, i test hanno mostrato un migliore mantenimento delle proprietà meccaniche della matrice in presenza della componente cellulare. CONCLUSIONI Grazie ad un’accurata progettazione di un set-up funzionale e l’ottimizzazione dei parametri di elettrofilatura, si sono potuti ottenere campioni di gelatina A e gelatina B con deposito omogeneo, fibre regolari e estremamente bassa presenza di difetti. Le prove di degradazione hanno consentito di definire un protocollo di reticolazione fosse più efficace e quale tipo di gelatina si dimostrasse più performante in particolare nel mantenimento della struttura fibrosa. Il cross-linking così ottimizzato ha consentito di incrementare la stabilità delle fibre elettrofilate in ambiente acquoso e di aumentare le proprietà meccaniche della matrice. Le prove di caratterizzazione biologica hanno permesso di confermare l’idoneità del processo di elettrofilatura e reticolazione della matrice all’applicazione come scaffold per colture cellulari; è inoltre stato ipotizzato dai risultati della DMA che la proliferazione cellulare sulle matrici possa essere in grado di compensare la perdita di proprietà meccaniche della matrice in ambiente di coltura. La progettazione di un bioreattore ha portato alla realizzazione di un sistema per la coltura dinamica dei costrutti, estremamente semplice e compatto che sembra rispettare tutti i requisiti di sterilità e funzionalità.
Ottimizzazione di processi e materiali per protesi valvolari ingegnerizzate biodegradabili
VIGNATI, LORENZO;ORTOLEVA, GIULIA ALESSANDRA MICOL
2017/2018
Abstract
ABSTRACT INTRODUCTION Cardiovascular diseases (both congenital and acquired) affect an increasing percentage of world population. Most of the observed heart diseases concern valves, and primarily the mitral and the aortic valves (compared to the pulmonary and tricuspid ones) as the left part of the heart is subject to greater pressures. Morphological and functional alterations that may affect the valves are divided in three major categories: • Insufficiency: it occurs when the valve does not close completely in a hermetic way, causing a retrograde blood flow. • Stenosis: it takes place when the valve orifice narrows due to a fusion of the edges of the flaps (called commissures); this condition causes accumulation of incoming blood and a consequent dangerous increase in blood pressure. • Steno-insufficiency; this is a situation in which both above conditions occur. All these abnormalities can be life-threatening for the patient and thus require periodic monitoring, detailed controls and, in some cases, urgent interventions. Thanks to scientific progress that has been witnessed in the last decades, different techniques and surgical procedures have been developed for the replacement of cardiac stenotic and insufficient valves. The pathological valve is replaced with a prosthetic valve, which can be both biological or mechanical; it has been registered that the number of implants of one type with respect to the other is rather similar and comparable. In the case of biological valves, the device is made of materials of biologic origin (adequately treated pork and bovine tissues) with a metallic or polymeric structure able to support and give the proper shape to perform the necessary anatomic function. On the contrary, the mechanical prosthetics are uniquely made of synthetic materials and are generally made up of several movable components bound together and fixated at the heart tissue. Comparing the two categories, we can affirm that biological prosthetics are more patient-friendly since the recipient will not have to undergo an anticoagulant therapy; on the other hand, these valves are less long-term performant due to degradation and calcification the natural materials are subjected to. Trying to solve the set of problems provided by both categories, research is moving towards tissue engineering with the development of support structures called scaffolds (often being biodegradable or bioresorbable) on which patient’s own cells are sown and made to proliferate. In this field there are two possible approaches for the scaffold production: through the realization of a valve from biological components (obtained from a human or animal donor that is previously decellularized and then reseeded with patient’s own cells) or by building a new synthetic valve using polymeric materials with different modalities and processes. Among the techniques that allow to obtain a structure to support cell culture, is electrospinning: this allows to build a customized scaffold in relation to the material, design and functional properties needed. The electrospinning technique allows a nanometric filament to be extruded and deposited on a two dimensional or three-dimensional shape (depending on the application needed). The deposition starts when the syringe needle, the spinneret, and the supporting structures, the collector, are positioned at two poles of opposing charge of a high-tension generator; the charge difference itself allows the outgoing material from the syringe to be attracted and thus deposited on the collector. The material used to electrospin is a solution with natural and synthetic polymers, eventually dissolved in solvents that bring them to the liquid state. In the following thesis work, a valve scaffold has been realized through the electrospinning process, in a way to optimize materials and production processes. MATERIALS AND METHODS The valves under analysis have been realized electrospinning solutions based on both pork gelatin type A and bovine gelatin type B, testing both at different concentrations. Being the purpose of the work to develop valve scaffolds with a three-dimensional geometry, a dynamic set-up has been adopted, provided with a rotational engine to which the collector was then connected in such a way that the whole collector surface of the collector was equally exposed (perpendicularly) to the flow. The electrospinning solution was delivered thanks to a syringe pump with adjustable flowrate in terms of ml/h. The selected and used collectors had four different geometries, all being three-dimensional but progressively more complex in order to allow a gradual and methodical optimization of the electrospinning parameters; the used shapes were rods (4 cm in length and 6 mm in diameter), bars (same diameter and 24 cm in length), a rotating cylinder (18,5 cm in length and 13 cm in diameter) and a valve shape (diameter of 2 cm). During the optimization phase of the electrospinning parameters, both the macroscopic morphology of the deposit visible to the naked-eye and the microscopic structure of the fibers were observed; particularly, the structure has been observed by mean of scanning electron microscope (SEM). This technique has also been used during the following electrospun matrices reticulation phase. Since it was necessary to make the fibers resistant and stable in an aqueous environment (and thus be able to simulate physiological conditions), chemical reticulation treatments were carried out. Solutions based on EDC and NHS in ethanol, acetonitrile and ethyl acetate were prepared for this goal; for each of them, various concentrations of EDC/NHS were tested. For results investigation, the specimens have been observed under SEM and degradation tests were carried. First analysis was aimed to observe the fibers morphological variations, the influence of the physical tension exerted during the immersion of specimens in the cross-linking solution and the effect of the drying technique; the second test was carried submerging the reticulated samples in PBS solution and 0,02% sodium azide at T=37°C ± x and weighing them after a time point of 1 hour, 48 hours and 7 days. Samples of gelatin A with sacrificial PEO were also electrospun. Dissolving the second element by immersion in acetonitrile, it was possible to maintain the structure of gelatin A but with a greater porosity. Once the reticulation process was optimized, biological characterization tests were carried out using HeLa, L929, EA.hy926 and SHSY5Y cells. In this work different test were performed: • Indirect cytotoxicity tests between reticulated samples with EDC and NHS, with glutaraldehyde vapors and with glutaraldehyde solution to compare different cross-linking processes and evaluate preconditioning effect. • Sowing tests in co-culture by placing endothelial cells and fibroblasts respectively on both sides of a suspended matrix (thus simulating the anatomical and physiological condition); for this purpose, set-ups were made with 3D printing. • Migration tests to investigate the speed of colonization of the matrices by the cells; in this case as well the set-ups were designed 3D printed. • Immunohistochemical analysis on samples sown for 7 days observing the modalities and entities of cell growth on them. In order to evaluate the mechanical properties of gelatin A, force ramp tensile tests were carried with DMA on both dry (reticulated and non-reticulated) and sown samples. As a final aspect of the evaluation, a bioreactor was designed to allow the electrospun valve to be tested within a pulsatile flow. RESULTS AND DISCUSSION The electrospinning process of gelatin A and gelatin B was optimized to identify the appropriate set of parameters for obtaining samples with homogeneous deposits, free from defects and with regular fibres. To optimize the reticulation process, EDC/NHS solutions were tested in different solvents, with different molarities and with variable sample immersion times. Observing the samples by SEM before the chemical treatment, after immersion in cross-linking solution, after immersion in water of the reticulated sample and after the degradation tests, the most suitable method was proved to be the one with 50 mM EDC and NHS in acetonitrile for a duration of 8 hours and with very slow and gradual drying; this particular combination allowed in fact to reinforce gelatin and to partially preserve its fibrous structure even after 7 days immersion in culture media. Thanks to the results of the degradation tests, it was also possible to verify that, between the two types of gelatin, type A is the best in terms of degradation because it shows the lowest loss of weight after immersion in saline solution for 7 days (equal to 10% of the initial weight). To demonstrate the effectiveness of cross-linking, DMA (Dynamic Mechanical Analysis) tests were also carried out; this analysis gave important confirmation of the improvement in the mechanical properties of the matrices following the cross-linking. To optimize the electrospinning of gelatin A with sacrificial PEO, a double spinneret set-up was built; needles were placed in the same direction, one opposite to the other and perpendicular to the axis of the collector. After electrospinning, the samples were immersed in acetonitrile for 4 hours in order to dissolve the PEO fibers (Gelatin AP). Indirect cytotoxicity tests on cross-linking methods confirmed the method validity of reticulation with EDC/NHS; in fact, already after the first hour of preconditioning, the eluates did not show any toxicity guaranteeing a cellular vitality almost equal to 100%. The co-culture experiments were carried out by printing in 3D a set-up that kept the sample suspended. One cell type at a time (EA.hy926 and L929 cells) was sown reversing the sample between one step and the next. After detecting by SEM, a significant cell colonization 7 days after sowing, immunohistochemical analyses were carried out; these provided further confirmation that the matrices had been densely colonized. Migration tests were carried out with L929 cells on three different matrices (positioning them in a 48well plate): gelatin A, gelatin AP with increased porosity and PCL; control sample wells were also sown without any matrix. The set-up for this experiment consists of a stainless-steel rod and two nylon rings printed in 3D: the lower ring is intended to bind the matrix at the bottom of the well and the upper ring (that has arms and an additional inner ring) is used to support the rod that covers the area to be shielded with its diameter. After sowing the matrices and marking the cells with a fluorescent dye, the rods were removed and the cell advancement was observed with a fluorescence microscope at three different time-points: 0 hours, 4 hours and 3 days. The obtained results showed that gelatin A and gelatin AP with increased porosity promote cell adhesion and migration. Concerning the mechanical analysis, tests showed a better maintenance of thanks to cell presence on its surface. CONCLUSION Thanks to a careful design of a functional set-up and the optimization of the electrospinning parameters, it was possible to obtain samples of gelatin A and gelatin B with homogeneous deposit, regular fibers and extremely low presence of defects. The degradation tests allowed to define a cross-linking protocol was more effective and which type of gelatin was more performing in terms of fibrous structure preservation. This optimized cross-linking procedure has made it possible to increase the stability of the electrospun fibers in an aqueous environment and to increase the mechanical properties of the matrix. Biological characterization tests allowed to confirm the suitability of the electrospinning and cross-linking method for producing scaffolds; it has also been hypothesized from the results of the DMA that cell proliferation on the matrices may be able to compensate the loss of the matrix mechanical properties in the culture environment. The design of a bioreactor has led to the development of a system for the dynamic culture of the electrospun valves; this device is extremely simple, compact and seems to respect all sterility requirements.File | Dimensione | Formato | |
---|---|---|---|
2018_10_Ortoleva_Vignati_01.docx
non accessibile
Descrizione: tesi completa
Dimensione
224.86 MB
Formato
Microsoft Word XML
|
224.86 MB | Microsoft Word XML | Visualizza/Apri |
2018_10_Ortoleva_Vignati_02.pdf
non accessibile
Descrizione: tesi completa pdf
Dimensione
8.99 MB
Formato
Adobe PDF
|
8.99 MB | Adobe PDF | Visualizza/Apri |
2018_10_Ortoleva_Vignati_01.docx
non accessibile
Descrizione: tesi completa FINALE
Dimensione
224.82 MB
Formato
Microsoft Word XML
|
224.82 MB | Microsoft Word XML | Visualizza/Apri |
2018_10_Ortoleva_Vignati_02.pdf
non accessibile
Descrizione: tesi completa pdf FINALE
Dimensione
8.94 MB
Formato
Adobe PDF
|
8.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142633