The present thesis has the scope to estimate the level of vibrations induced by railway traffic on the surrounding environment and to propose adequate mitigation measures to bring the disturbance into acceptable limits for the people comfort and for not interfering with the manufacturing processes. One possibility is to attenuate waves by introducing obstacles on the transmission path, that allows to protect buildings without modifying the track, for example by means of trenches excavation, with the insertion of barriers into the ground or with soil stiffening. It can be ascertained that barriers work in two ways: the bending stiffness hinders vibrations with wavenumber greater than the one of the bending wave in the barrier, which behaves like a Timoshenko beam, and the depth of the barrier allows to reflect a part of the incident wave. Trenches, conversely, work only by reflection. The analytic complexity of the problem requires numerical methods, like 3D finite element models. In this case, dynamic analyses, that simulate both the movable loads associated to the passage of the trains and the waves propagation through the ground, are onerous from a computational point of view: the necessity to effectuate non-linear analyses of the train-rail interaction requires to impose little time increments on a big domain, capable of incorporating also the surrounding ground and buildings. So, in order to study the waves propagation and the effectiveness of the barriers, usually, it is applicated a concentrated harmonic load, varying the excitation frequency. To transform the load from fixed to movable, the present thesis proposes a substructuring approach of the problem, by decoupling and superimposing the effects of analyses in the time domain and frequency domain. The load generated by the train is calculated with time domain integration of the equations of motion, while the subsystem composed by the ballast and the ground is represented by means of frequency response functions. The results of the dynamic finite element analysis are used to calculate in the frequency domain the dynamic response of the track and of some receivers placed far from it at the passage of the train.
La presente tesi ha lo scopo di stimare il livello di vibrazioni indotto dal traffico ferroviario sull’ambiente circostante e di proporre misure di mitigazione adeguate per riportare il disturbo entro limiti accettabili per il comfort della popolazione e per non interferire con i processi manifatturieri. Una possibilità è quella di attenuare le onde introducendo ostacoli sul percorso di propagazione, che consentono di proteggere le costruzioni senza modificare la linea ferroviaria, ad esempio con lo scavo di trincee, con l’inserimento di barriere nel terreno o con l’irrigidimento del suolo. Si può constatare che le barriere lavorano in due modi: la rigidezza flessionale ostacola le vibrazioni con numero d’onda superiore a quello dell’onda di flessione nella barriera, che si comporta come una trave di Timoshenko, e la profondità dell’ostacolo consente di riflettere parte dell’onda incidente. Le trincee, invece, lavorano solo per riflessione. La complessità analitica del problema richiede l’uso di metodi numerici, come modelli 3D a elementi finiti. In questo caso, analisi dinamiche che simulano sia i carichi mobili legati al passaggio dei treni, sia la propagazione delle onde nel terreno, sono onerose dal punto di vista del calcolo: la necessità di effettuare analisi non-lineari dell’interazione treno-rotaia richiede di imporre piccoli incrementi di tempo su un dominio grande, in grado di inglobare anche il terreno e le costruzioni circostanti. Pertanto, per studiare la propagazione delle onde e l’efficacia delle barriere, di solito, si applica un carico armonico concentrato, variando la frequenza di sollecitazione. Per trasformare il carico da fisso a mobile, la presente tesi propone una sottostrutturazione del problema, disaccoppiando e sovrapponendo gli effetti di analisi nei domini del tempo e delle frequenze. La forzante generata dal treno viene calcolata con integrazione nel tempo delle equazioni di moto, mentre il sottosistema formato da ballast e terreno è rappresentato mediante funzioni di risposta in frequenza. I risultati dell’analisi dinamica a elementi finiti sono usati per calcolare nel dominio delle frequenze la risposta della via di corsa e di alcuni ricevitori distanti da essa al passaggio del treno.
Metodi per la riduzione delle vibrazioni indotte dal traffico ferroviario
MORI, FRANCESCO
2017/2018
Abstract
The present thesis has the scope to estimate the level of vibrations induced by railway traffic on the surrounding environment and to propose adequate mitigation measures to bring the disturbance into acceptable limits for the people comfort and for not interfering with the manufacturing processes. One possibility is to attenuate waves by introducing obstacles on the transmission path, that allows to protect buildings without modifying the track, for example by means of trenches excavation, with the insertion of barriers into the ground or with soil stiffening. It can be ascertained that barriers work in two ways: the bending stiffness hinders vibrations with wavenumber greater than the one of the bending wave in the barrier, which behaves like a Timoshenko beam, and the depth of the barrier allows to reflect a part of the incident wave. Trenches, conversely, work only by reflection. The analytic complexity of the problem requires numerical methods, like 3D finite element models. In this case, dynamic analyses, that simulate both the movable loads associated to the passage of the trains and the waves propagation through the ground, are onerous from a computational point of view: the necessity to effectuate non-linear analyses of the train-rail interaction requires to impose little time increments on a big domain, capable of incorporating also the surrounding ground and buildings. So, in order to study the waves propagation and the effectiveness of the barriers, usually, it is applicated a concentrated harmonic load, varying the excitation frequency. To transform the load from fixed to movable, the present thesis proposes a substructuring approach of the problem, by decoupling and superimposing the effects of analyses in the time domain and frequency domain. The load generated by the train is calculated with time domain integration of the equations of motion, while the subsystem composed by the ballast and the ground is represented by means of frequency response functions. The results of the dynamic finite element analysis are used to calculate in the frequency domain the dynamic response of the track and of some receivers placed far from it at the passage of the train.File | Dimensione | Formato | |
---|---|---|---|
2018_10_Mori.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
23.71 MB
Formato
Adobe PDF
|
23.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142644