Ultrafast relaxation dynamics in several organic molecules play a crucial role in many mechanisms which lie at the basis of life, such as human vision and DNA photostability. Modeling complex organic structures, however, is far from easy and from here it comes the need for prototypical molecules which, if understood, could shed a first light on this topic. In this sense, ethylene represents an ideal candidate because it shows such ultrafast processes and it has been theoretically studied for thirty years. Moreover, thanks to its single C-C double bound, its cation is considered the simplest organic π radical system. In order to observe these molecular dynamics, few-femtoseconds pulses in the extreme-ultraviolet (XUV) spectral region have been exploited in pumpprobe experiments. These ultrashort pulses are obtained through the highly non-linear process of high-order harmonic generation (HHG). Subsequently, spectral selection is performed through a time-delay compensated monochromator (TDCM). This step is crucial: it determines an unavoidable temporal broadening of the pulses but it also enables the selective excitation of single energy levels in the ethylene’s molecule which represents the major innovation in these kind of experiments. During the data collection, finally, a continuous effort has been made in order to improve the signal-to-noise ratio for a simpler interpretation of the observed dynamics. The achieved results allow to reach a clearer picture of the ultrafast relaxation dynamics undergone by ethylene and its cation. In particular, it has been possible to confirm some speculations based on theoretical computations suggested in literature concerning the exact energy position of a conical intersection (CI) fundamental in these deexcitation mechanisms. Besides a lot of new data, whose physical understanding is still missing, have been made available for further theoretical studies.
Le dinamiche di rilassamento ultraveloci in diverse molecole organiche hanno un ruolo fondamentale in molti meccanismi che stanno alla base della vita, come ad esempio la vista dell’uomo e la fotostabilità del DNA. Modellizzare complesse strutture organiche, tuttavia, è tutt’altro che facile e da ciò nasce il bisogno di studiare molecole-prototipo che, se comprese, potrebbero far luce su questo argomento. In questo senso l’etilene rappresenta il candidato ideale poiché esso mostra processi ultraveloci e dal punto di vista teorico è studiato da circa trent’anni. Inoltre, a causa del suo unico doppio legame C-C, il suo catione è considerato il più semplice sistema radicale π. Al fine di osservare queste dinamiche molecolari, impulsi della durata di pochi femtosecondi nella regione spettrale dell’estremo ultravioletto (XUV) sono stati sfruttati per esperimenti di pump-probe. Questi impulsi ultrabrevi sono ottenuti attraverso il processo non lineare della generazione di armoniche di alto ordine (HHG). Successivamente, viene eseguita una selezione spettrale mediante un monocromatore tempo-compensato (TDCM). Questo passaggio è cruciale: esso determina un inevitabile allungamento degli impulsi ma anche l’eccitazione selettiva di singoli livelli energetici nella molecola di etilene che rappresenta la maggior innovazione in questo tipo di esperimenti. Durante la raccolta dei dati, infine, un continuo sforzo è stato profuso nell’intento di migliorare il rapporto segnale-rumore per una più semplice interpretazione delle dinamiche ossevate. I risultati raggiunti permettono di avere una pittura più chiara delle dinamiche di rilassamento ultraveloci mostrate dall’etilene e dal suo catione. In particolare, è stato possibile confermare alcune ipotesi basate su calcoli teorici avanzate in letteratura circa l’esatta posizione energetica di una intersezione conica (CI) fondamentale in questi meccanismi di diseccitazione. Inoltre una notevole mole di dati la cui comprensione fisica ancora manca è stata messa a disposizione di futuri studi teorici.
Ultrafast relaxation dynamics in ethylene measured by using sub-10-fs extreme-ultraviolet pulses
PRATI, ALBERTO
2017/2018
Abstract
Ultrafast relaxation dynamics in several organic molecules play a crucial role in many mechanisms which lie at the basis of life, such as human vision and DNA photostability. Modeling complex organic structures, however, is far from easy and from here it comes the need for prototypical molecules which, if understood, could shed a first light on this topic. In this sense, ethylene represents an ideal candidate because it shows such ultrafast processes and it has been theoretically studied for thirty years. Moreover, thanks to its single C-C double bound, its cation is considered the simplest organic π radical system. In order to observe these molecular dynamics, few-femtoseconds pulses in the extreme-ultraviolet (XUV) spectral region have been exploited in pumpprobe experiments. These ultrashort pulses are obtained through the highly non-linear process of high-order harmonic generation (HHG). Subsequently, spectral selection is performed through a time-delay compensated monochromator (TDCM). This step is crucial: it determines an unavoidable temporal broadening of the pulses but it also enables the selective excitation of single energy levels in the ethylene’s molecule which represents the major innovation in these kind of experiments. During the data collection, finally, a continuous effort has been made in order to improve the signal-to-noise ratio for a simpler interpretation of the observed dynamics. The achieved results allow to reach a clearer picture of the ultrafast relaxation dynamics undergone by ethylene and its cation. In particular, it has been possible to confirm some speculations based on theoretical computations suggested in literature concerning the exact energy position of a conical intersection (CI) fundamental in these deexcitation mechanisms. Besides a lot of new data, whose physical understanding is still missing, have been made available for further theoretical studies.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
6.33 MB
Formato
Adobe PDF
|
6.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142741