Hydrogels have received significant attention, especially in the past 30 years, mainly because of their exceptional promise in biomedical applications, particularly in tissue engineering, as scaffold for cells growth, and in drug delivery applications, as controlled delivery devices. They are three-dimensional (3D) networks of hydrophilic polymers held together by covalent bonds or other cohesive forces such as hydrogen or ionic bonds. They are glassy in the dry state and then, in the presence of solvents, are able to swell while preserving their original shape to form elastic gels. Capable to retain a large amount of water in their structure (up to 95% of the total weight), they can either degrade in it by polymer chain degradation reactions (e.g., hydrolysis or proteolysis into smaller molecules) and are then called resorbable hydrogels, or they cannot and are then called stable hydrogels. These scaffolds slowly degrade in the physiological environment, leading the growing tissue to replace the former filled site. The characterization at the equilibrium of swollen hydrogel, the dynamic simulation of the swelling and, finally, the description and characterization of the drug delivery from the preloaded device are the main aims and purposes of this MSc thesis. All the simulations have been on experimental data taken from polyacrylic-based (Carbomer) hydrogels crosslinked with Jeffamine. After a brief but exhaustive introduction of the hydrogels world, the following chapters are focused on different topics which in reality are fully coupled and interact one each other: swelling equilibrium, swelling dynamic (in particular characterization of the overshooting, not so common in such devices) and finally drug delivery (release of solute dispersed in the solvent)
Gli idrogeli stanno ricevendo una sempre più crescente attenzione, specialmente negli ultimi decenni, a causa delle loro promettenti applicazioni in campo biomedico, in particolare nell’ingegneria tissutale, come strutture di appoggio per la crescita cellulare e nell’ambito del rilascio di principi attivi come sistemi di rilascio controllato. Si tratta di strutture tridimensionali costituite da catene polimeriche idrofile interconnesse da legami chimici covalenti o forze coesive fisiche quali ponti idrogeno o forze elettrostatiche. Allo stato secco si presentano sotto forma vetrosa ed in presenza di un solvente sono in grado di rigonfiarsi mantenendo la forma e creando strutture elastiche. Sono in grado di trattenere notevoli quantità di solvente fino anche ad un massimo del 95% del peso totale finale, inoltre degradano secondo meccanismo chimico (idrolisi delle interconnessioni tra catene polimeriche) e/o enzimatico oppure rimangono immutati e stabili, non dando luogo a reazioni di degradazione. La caratterizzazione all’equilibrio del gel rigonfiato, la simulazione della dinamica dello swelling ed infine la descrizione e la caratterizzazione del rilascio di farmaci da gel precaricato sono i principali argomenti toccati da questa tesi magistrale. Tutti i dati sperimentali sono stati raccolti da campioni di gel denominato a base di acido policarilico (Carbomer) con Jeffamine come agente ramificante. Dopo una breve, ma esaustiva introduzione sul mondo dei gel, i capitoli seguenti sono focalizzati sui diversi argomenti già citati che in realtà sono tra loro fortemente interconnessi: swelling all’equilibrio, dinamica dello swelling (in particolare caratterizzazione dell’andamento a massimo, non molto frequente) ed a concludere il rilascio di principio attivo
Mathematical modeling of crosslinked polyacrylic based hydrogels : gelation, physical properties and drug delivery
BISOTTI, FILIPPO
2017/2018
Abstract
Hydrogels have received significant attention, especially in the past 30 years, mainly because of their exceptional promise in biomedical applications, particularly in tissue engineering, as scaffold for cells growth, and in drug delivery applications, as controlled delivery devices. They are three-dimensional (3D) networks of hydrophilic polymers held together by covalent bonds or other cohesive forces such as hydrogen or ionic bonds. They are glassy in the dry state and then, in the presence of solvents, are able to swell while preserving their original shape to form elastic gels. Capable to retain a large amount of water in their structure (up to 95% of the total weight), they can either degrade in it by polymer chain degradation reactions (e.g., hydrolysis or proteolysis into smaller molecules) and are then called resorbable hydrogels, or they cannot and are then called stable hydrogels. These scaffolds slowly degrade in the physiological environment, leading the growing tissue to replace the former filled site. The characterization at the equilibrium of swollen hydrogel, the dynamic simulation of the swelling and, finally, the description and characterization of the drug delivery from the preloaded device are the main aims and purposes of this MSc thesis. All the simulations have been on experimental data taken from polyacrylic-based (Carbomer) hydrogels crosslinked with Jeffamine. After a brief but exhaustive introduction of the hydrogels world, the following chapters are focused on different topics which in reality are fully coupled and interact one each other: swelling equilibrium, swelling dynamic (in particular characterization of the overshooting, not so common in such devices) and finally drug delivery (release of solute dispersed in the solvent)File | Dimensione | Formato | |
---|---|---|---|
2018_10_Bisotti.pdf
solo utenti autorizzati dal 11/09/2021
Descrizione: Testo della tesi
Dimensione
4.98 MB
Formato
Adobe PDF
|
4.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142742