Photonic crystals are structures made of materials with different refractive indices, with periodicities in one, two or three dimensions. The 1D photonic crystals consist of an alternating stratification of the constituent materials, creating structures with interesting optical properties. As it happens for the propagation of electrons through the crystal lattice, here a forbidden band is formed called a photonic band gap, due to the difference between the two refractive indices. In these areas, light with forbidden wavelengths is reflected by the grating, creating particular colors called structural colors, which have completely different properties compared to pigments. In this work, report on responsive photonic crystals created with metal oxides, more precisely with TiO2, SiO2 and ITO (indium doped tin oxide), materials of considerable interest thanks to the wide range of their refractive indices. We firstly optimized all the fabrication parameters (such as spin coating speed, nanoparticle concentration in the dispersion, filtering and sonication time), to the realize of crystals with optimal optical properties. Later, we moved to the characterization of the samples. Through spectrophotometry, the incidence of the optical band gap and its changes in the different crystals was evaluated, especially by evaluating the influence of the layer thickness. Moreover, by varying the incidence angle of the light beam, we have seen how the spectrum undergoes a blue shift in relation to the Bragg-Snell law. Finally, the charge density properties were used to vary the plasma frequency and thus the optical band gap. To do this, the photonic crystals were subjected to an electric field which led to a displacement of the photonic peak. Currently the devices that allow to control the optical properties of the materials is one of the most investigated research fields. Photonic crystals can be used in various ways: optical sensors, displays, mirrors for laser cavities, solar cell top coatings, optical circuits, color-changing paints and inks, smart windows, multilayer dielectric mirrors and waveguides. There are other different uses that can be made with these periodic structures, each of which represents a goal for research and improvement of daily life.
I cristalli fotonici sono strutture costituite da materiali con diverso indice di rifrazione, la cui periodicità si ripete in una, due o tre dimensioni. I cristalli fotonici 1D consistono in una stratificazione alternata dei materiali costituenti, creando strutture dalle interessanti proprietà ottiche. Esattamente come succede per la propagazione di elettroni attraverso il reticolo cristallino, anche qui si forma una banda proibita chiamata band gap fotonico, dovuta alla differenza tra i due indici di rifrazione. In queste zone, la luce con lunghezza d’onda “proibita” viene diffratta creando colorazioni particolari, chiamati colori strutturali, che presentano proprietà completamente diverse rispetto alle colorazioni derivanti da pigmenti, rendendo questi cristalli estremamente interessanti per utilizzi futuri. In questo lavoro si sono presi in considerazione cristalli fotonici responsivi creati con ossidi metallici, più precisamente con TiO2, SiO2 e ITO (ossido di indio drogato stagno), materiali dal considerevole interesse grazie all’ampio range dei loro indici di rifrazione. Sono stati realizzati vari campioni, variando tutti i parametri che entrano in gioco durante la sintesi (velocità di spin coating, concentrazione delle nanoparticelle nella dispersione, filtraggio e tempo di sonicatura), fino alla realizzazione di cristalli con proprietà ottiche significative. In seguito, si è passati alla caratterizzazione dei campioni. Si è valutata, attraverso spettrofotometria, l’incidenza del band gap ottico e i suoi cambiamenti nei diversi cristalli, valutando soprattutto l’influenza dello spessore dei layer. Inoltre, variando l’angolo di incidenza del fascio luminoso, si è visto come lo spettro subisca un blue shift in relazione alla legge di Bragg-Snell. Infine, si sono sfruttate le proprietà di densitàdi carica per far variare la frequenza di plasma e quindi il band gap ottico. Per far questo si sono sottoposti i cristalli fotonici ad un campo elettrico che ha portato ad uno spostamento del picco fotonico. Attualmente i dispositivi che permettono di controllare le proprietà ottiche dei materiali rappresenta uno dei campi di ricerca più indagati. I cristalli fotonici possono essere utilizzati in vari modi: sensori ottici, display, specchi per le cavità dei laser, elettrodi trasparenti delle celle solari, circuiti ottici, pitture e inchiostri che variano il loro colore, smart windows, specchi dielettrici multilayer e guide d’onda. Ci sono altri svariati usi che si possono fare con queste strutture periodiche, ognuno dei quali rappresenta un traguardo per la ricerca e il miglioramento della vita quotidiana.
Fabrication, characterization and electric doping of ITO-TiO2 and ITO-SiO2 photonic crystals
MOSCARDI, LILIANA
2017/2018
Abstract
Photonic crystals are structures made of materials with different refractive indices, with periodicities in one, two or three dimensions. The 1D photonic crystals consist of an alternating stratification of the constituent materials, creating structures with interesting optical properties. As it happens for the propagation of electrons through the crystal lattice, here a forbidden band is formed called a photonic band gap, due to the difference between the two refractive indices. In these areas, light with forbidden wavelengths is reflected by the grating, creating particular colors called structural colors, which have completely different properties compared to pigments. In this work, report on responsive photonic crystals created with metal oxides, more precisely with TiO2, SiO2 and ITO (indium doped tin oxide), materials of considerable interest thanks to the wide range of their refractive indices. We firstly optimized all the fabrication parameters (such as spin coating speed, nanoparticle concentration in the dispersion, filtering and sonication time), to the realize of crystals with optimal optical properties. Later, we moved to the characterization of the samples. Through spectrophotometry, the incidence of the optical band gap and its changes in the different crystals was evaluated, especially by evaluating the influence of the layer thickness. Moreover, by varying the incidence angle of the light beam, we have seen how the spectrum undergoes a blue shift in relation to the Bragg-Snell law. Finally, the charge density properties were used to vary the plasma frequency and thus the optical band gap. To do this, the photonic crystals were subjected to an electric field which led to a displacement of the photonic peak. Currently the devices that allow to control the optical properties of the materials is one of the most investigated research fields. Photonic crystals can be used in various ways: optical sensors, displays, mirrors for laser cavities, solar cell top coatings, optical circuits, color-changing paints and inks, smart windows, multilayer dielectric mirrors and waveguides. There are other different uses that can be made with these periodic structures, each of which represents a goal for research and improvement of daily life.File | Dimensione | Formato | |
---|---|---|---|
Tesi MOSCARDI LILIANA.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142779