Mechanical properties of arterial tissues constitute an important aspect of cardiovascular medicine research, as they govern the nature of many diseases. In order to correctly estimate them, it has been demonstrated that stress-strain state must be observed on a tissue under biaxial loading condition. While in the past it was necessary to build custom devices for this purpose, nowadays some commercial ones are available on the market, but they are expensive and, in most cases, over-dimensioned for this task. The object of this thesis is to design a low cost device, maintaining a good performance level with a properly developed control system. Dealing with arteries physiological stress state and focusing on quasi-static tension rate, it is assumed that loads involved in arterial stretching can be afforded also by components produced through AM (Additive Manufacturing) with FDM (Fused Deposition Method) using plastic materials. Always aiming at cost reduction, the automation of the whole system is carried out by means of rapid prototyping boards with compatible load cells, programmed with tailor-made software and control logics. The machine is analyzed and dimensioned with numerical simulations and prototyping. Moreover, a planar biaxial tensile force control on a testing material is performed, in order to analyze the performances of the control system. With a limited budget, it is demonstrated that such device provides an optimal response in load tracking, in a force range broad enough to guarantee arteries stress-strain state determination. It is concluded that the design of AM components is suitable for this application and the mechanical lack is well compensated by the force feedback control. Even if the main challenge for arterial testing in the proposed configuration is accomplished, before performing such tests a strain monitoring system must be integrated with a software for data post-processing.
Le proprietà meccaniche dei tessuti arteriosi costituiscono un aspetto fondamentale per la ricerca nel campo della medicina cardiovasolare, dato che determinano la natura di molte patologie. Per stimarle al meglio, è stato dimostrato che il loro stato di sforzo/deformazione deve essere analizzato in condizioni di carico biassiale. Mentre in passato era necessario costruire macchinari specifici per questo scopo, oggi alcuni tester commerciali sono disponibili sul mercato, ma sono costosi e, nella maggior parte dei casi, sovradimensionati per la funzione che si richiede di svolgere. L'obiettivo di questo studio è quello di sviluppare una macchina a basso costo, che mantenga un buon livello di prestazioni grazie ad un'appropriata logica di controllo. Considerando lo stato di sollecitazione fisiologico nelle arterie, in condizioni di carico quasi-statico, si è ipotizzato che le forze richieste durante il test possono essere sopportate anche da componenti realizzati tramite stampa 3D con metodo FDM, usando materiali plastici. Sempre allo scopo di limitare i costi, l'automazione dell'intero sistema è svolta da schede per prototipazione rapida con celle di carico compatibili, programmate con software e logiche di controllo sviluppati ad hoc. La macchina è stata analizzata e dimensionata con il supporto di simulazioni numeriche e la realizzazione di prototipi. Con un budget limitato, si è dimostrato che la macchina segue in modo ottimo la forza di riferimento, in una scala di carico sufficiente per la buona riuscita del test. Si conclude che la progettazione di componenti con stampa 3D è adatta a tale scopo e il controllo retroazionato in forza compensa in modo efficace le mancanze della meccanica. Anche se la sfida principale nei test biassiali su arterie è stata superata, prima di eseguire test completi è necessario integrare un sistema di misura per le deformazioni con un software per l'elaborazione dei dati finali.
Design and control of a low cost planar biaxial testing system for arterial walls
CARBONE, FABIO;CAVANDOLI, TOMMASO
2017/2018
Abstract
Mechanical properties of arterial tissues constitute an important aspect of cardiovascular medicine research, as they govern the nature of many diseases. In order to correctly estimate them, it has been demonstrated that stress-strain state must be observed on a tissue under biaxial loading condition. While in the past it was necessary to build custom devices for this purpose, nowadays some commercial ones are available on the market, but they are expensive and, in most cases, over-dimensioned for this task. The object of this thesis is to design a low cost device, maintaining a good performance level with a properly developed control system. Dealing with arteries physiological stress state and focusing on quasi-static tension rate, it is assumed that loads involved in arterial stretching can be afforded also by components produced through AM (Additive Manufacturing) with FDM (Fused Deposition Method) using plastic materials. Always aiming at cost reduction, the automation of the whole system is carried out by means of rapid prototyping boards with compatible load cells, programmed with tailor-made software and control logics. The machine is analyzed and dimensioned with numerical simulations and prototyping. Moreover, a planar biaxial tensile force control on a testing material is performed, in order to analyze the performances of the control system. With a limited budget, it is demonstrated that such device provides an optimal response in load tracking, in a force range broad enough to guarantee arteries stress-strain state determination. It is concluded that the design of AM components is suitable for this application and the mechanical lack is well compensated by the force feedback control. Even if the main challenge for arterial testing in the proposed configuration is accomplished, before performing such tests a strain monitoring system must be integrated with a software for data post-processing.File | Dimensione | Formato | |
---|---|---|---|
2018_10_Carbone_Cavandoli.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
31.09 MB
Formato
Adobe PDF
|
31.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142814