Robots are physical systems with varying degrees of autonomy that operate in different and dynamic physical environments. Their use in our daily lives is increasing, as it is appealing for tasks that can be referred to as the four Ds —too Dangerous, too Dull, too Dirty, and too Difficult— to be done by humans. Nevertheless, robotic systems are prone to different types of faults, which have the potential to affect the efficiency and the safety of the robot and/or its surroundings. For these reasons, FDD (Fault Detection and Diagnosis) techniques are nowadays essential in robotics, with the aim of facilitating the system recovery. Based on such considerations, this thesis addresses the problem of supervision of a humanoid robot, specifically focusing on its head. With this scope in mind, the robotic system has been modelled and controlled by means of a Linear Parameter Varying (LPV) feedback controller. Hence, a fault detection and isolation scheme has been implemented using the LPV approach. Such a method has been selected as the one to be followed as it encompasses the performance requirements a humanoid robot implies: it has to detect faults quickly, online and with a low computational burden, according to expectations autonomously generated. Later, a fault tolerant scheme has been designed to compensate the faulty effect, once the fault is detected and isolated. Lastly, all the above-mentioned schemes have been tested in simulation.
I robot sono sistemi dotati di un grado di autonomia variabile e che operano in molteplici e mutevoli ambienti. Oggigiorno, il loro impiego è in costante aumento, in particolare in relazione ai cosiddetti "four Ds tasks", ossia compiti troppo pericolosi, monotoni, pesanti e difficili per essere realizzati da esseri umani. Nonostante ciò, i sistemi robotici sono inclini a differenti tipi di guasti ed anomalie, che possono intaccarne l’efficienza e la sicurezza. Per tanto, tecniche di rilevamento e diagnosi di tali guasti (FDD techniques) sono ormai necessarie nel campo della robotica, al fine di facilitare il ripristino del corretto funzionamento del sistema. Partendo da tali considerazioni, questa tesi affronta il problema della supervisione di un robot umanoide, focalizzando l’attenzione sulla sua testa. A tal fine, il sistema robotico in analisi è stato modellizzato ed un sistema di controllo in retroazione di tipo LPV (Linear Parameter Varying) è stato disegnato. In seguito, uno schema di rilevamento ed isolamento di guasti è stato implementato, anch’esso attraverso l’approccio LPV. Infatti, tale approccio risulta adatto a far fronte alle esigenze peculiari di un robot umanoide, il quale, a partire da previsioni da esso stesso autonomamente generate, deve poter rilevare guasti in maniera rapida, online e con un basso costo computazionale. Inoltre, è stato sviluppato uno schema di controllo con tolleranza ai guasti, atto a compensarne l’effetto, a seguito del loro rilevamento ed isolamento. Infine, gli schemi di controllo citati finora sono stati testati in simulazione.
Supervision of a humanoid robot
ANGARANO, GIULIA
2017/2018
Abstract
Robots are physical systems with varying degrees of autonomy that operate in different and dynamic physical environments. Their use in our daily lives is increasing, as it is appealing for tasks that can be referred to as the four Ds —too Dangerous, too Dull, too Dirty, and too Difficult— to be done by humans. Nevertheless, robotic systems are prone to different types of faults, which have the potential to affect the efficiency and the safety of the robot and/or its surroundings. For these reasons, FDD (Fault Detection and Diagnosis) techniques are nowadays essential in robotics, with the aim of facilitating the system recovery. Based on such considerations, this thesis addresses the problem of supervision of a humanoid robot, specifically focusing on its head. With this scope in mind, the robotic system has been modelled and controlled by means of a Linear Parameter Varying (LPV) feedback controller. Hence, a fault detection and isolation scheme has been implemented using the LPV approach. Such a method has been selected as the one to be followed as it encompasses the performance requirements a humanoid robot implies: it has to detect faults quickly, online and with a low computational burden, according to expectations autonomously generated. Later, a fault tolerant scheme has been designed to compensate the faulty effect, once the fault is detected and isolated. Lastly, all the above-mentioned schemes have been tested in simulation.| File | Dimensione | Formato | |
|---|---|---|---|
|
GA_Master_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142871