Concrete is, after water, the most widely used material in the world with usage of about 2 billion tonnes per year. One of the crucial reasons for its widespread use as a building material lies in its characteristic of being fluid in the first phase, being able to fill any mould it is poured into, and then transforming into its solid state sustaining. Despite the flexibility of fluid concrete, and the advances in digital design and modelling which opens infinite possibilities in modelling complexity, no fully efficient solution has yet been developed for the production of complex concrete architectural forms. Given the need of bridging this gap between digital modelling and production processes, formwork manufacturing can drastically benefit from the inherent advantages of digital fabrication. In this context, exploiting the compressive and tensile resistance of Ultra High Performance Fibre-Reinforced Concrete and the high-resolution geometrical complexity achievable with Additive manufacturing, the thesis aims at taking on these advances in material and manufacturing processes to propose a design-driven production approach for the fabrication of formworks for multi-performative prefabricated structural concrete panels with high geometrical complexity. Specifically, on the one hand the research takes advantage of Fused Deposition Modelling (FDM) 3D Printing technology, which unlike most of conventional fabrication methods allows full optimisation of material usage, being it only deposited where needed, in the necessary quantities to fulfill the requirements. In the last decade, the constantly growing market and the diffusion of 3D printing in most production sectors of the, from design to the food industry, and now increasingly in constructions, is pushing the technology from being a mere prototyping tool to be often a key part of the production chain, thus reducing costs of machines and materials more and more. Building on material optimisation and freeform design, 3D printing is expected to lead to more sustainable and light construction thanks to more efficient design as well as lighter and smarter construction techniques which would reduce material waste. On the other hand, concrete technology is evolving towards increasingly performative materials. Ultra High Performance Fibre-Reinforced Concrete (UHPFRC) is the highest peak of such innovation process , which is a combination of high performance concrete matrix and fibre reinforcement, that, due to the high binder dosage, low water to binder ratio and relatively high fibre dosage, has superior mechanical properties and energy absorption capacity. The production of such material brings higher initial costs and energy consumption, but its use guarantee higher mechanical properties, hence the need of less material, higher life cycle of the structure and lower maintenance needed. The specific framework of application in the realm of architecture and constructions of the proposed technology is in those highly customised and complex constructive elements which are either unique or require a high degree of geometrical intricancy. Given the extreme design freedom and the high degree of complexity achievable by additive manufacturing technologies on one side, and the fluidity of concrete together with the compressive and tensile mechanical resistances of Ultra High Performance Fibre Reinforced Concrete on the other side, the thesis is looking for a novel architectural and constructive approach to complex lightweight constructions with concrete, through the development of 3D printed formworks for the production of highly performative precast concrete panels.
Il calcestruzzo è, dopo l'acqua, il materiale più utilizzato al mondo con un consumo di circa 2 miliardi di tonnellate all'anno. Una delle ragioni fondanti del suo uso diffuso come materiale nelle costruzioni risiede nella sua caratteristica di essere fluido nel suo stato primario, e di essere quindi in grado di riempire qualsiasi stampo in cui viene versato, ma di trasformarsi in un materiale solido con altissime prestazioni in compressione. Nonostante la potenziale flessibilità del calcestruzzo fluido e i progressi della progettazione e della modellazione digitale, che aprirebbero infinite possibilità nella complessità del disegno architettonico, non è ancora stata sviluppata una soluzione pienamente efficiente per la produzione di forme costruttive complesse in calcestruzzo. Data la necessità di colmare questo divario tra la modellazione digitale e i processi di produzione, la produzione di casseforme può trarre drasticamente vantaggio dai vantaggi intrinseci della fabbricazione digitale. In questo contesto, sfruttando la resistenza in compressione e anche in trazione del calcestruzzo fibrorinforzato ad altissime prestazioni (UHPFRC), e la complessità geometrica ad alta risoluzione ottenibile con la manifattura additiva, la tesi mira a sfruttare questi progressi nei processi materiali e produttivi per proporre un nuovo approccio per la concettualizazione, modellazione e fabbricazione di casseforme per pannelli strutturali ad alta complessità geometrica prefabbricati in calcestruzzo. In particolare, da un lato la ricerca si avvale della tecnologia di stampa 3D Fused Deposition Modeling (FDM), che a differenza della maggior parte dei metodi di fabbricazione convenzionali consente l'ottimizzazione completa dell'utilizzo del materiale, essendo depositato solo dove necessario, nelle quantità necessarie per soddisfare i requisiti. Nell'ultimo decennio, il mercato in costante crescita e la diffusione della stampa 3D nella maggior parte dei settori produttivi, dalla progettazione all'industria alimentare, e ora sempre più nelle costruzioni, stanno spingendo la tecnologia dall'essere un semplice strumento di prototipazione ad diventare sempre più spesso un elemento fondamentale della catena di produzione, riducendo drasticamente l'utilizzo di materiale e i costi di produzione. Basandosi sull'ottimizzazione dei materiali e sul design a forma libera, la stampa 3D può portare alla concezione da parte del designer di un architettura più sostenibile e leggera, grazie a una progettazione più efficiente e a tecniche costruttive basate sull'ottimizazione della performance, e sulla riduzione del materiale in eccesso. D'altra parte, la tecnologia del calcestruzzo si sta evolvendo verso materiali sempre più performativi. Il calcestruzzo fibrorinforzato ad altissime prestazioni (UHPFRC) è il più alto picco di tale processo di innovazione, essendo una combinazione di matrice di cemento ad alte prestazioni e rinforzo di fibre, che, a causa dell'alto dosaggio del legante, del rapporto acqua-legante e dell'alta quantità di fibre, ha proprietà meccaniche e capacità di assorbimento di energia drasticamente superiori. La produzione di tale materiale comporta costi iniziali e consumi energetici più elevati, ma il suo uso garantisce proprietà meccaniche più elevate, e quindi la necessità di meno materiale, un ciclo di vita della struttura più duraturo e minore manutenzione necessaria. Il contesto specifico di applicazione nel campo dell'architettura e delle costruzioni della tecnologia proposta si trova in quegli elementi costruttivi complessi che sono unici o richiedono un elevato grado di complessità geometrica. Data la estrema libertà progettuale e l'elevato grado di complessità raggiungibile da tecnologie di produzione additiva da un lato, e la fluidità e la resistenze meccanica in compressione e trazione dell'UHPFRC dall'altro lato, la tesi investiga un nuovo approccio architettonico e costruttivo nella fabbricazioni di elementi complessi in costruzioni leggere con calcestruzzo, attraverso lo sviluppo di casseforme stampate in 3D.
Additive formwork. Advancing concrete casting manufacturing
BRESEGHELLO, LUCA
2017/2018
Abstract
Concrete is, after water, the most widely used material in the world with usage of about 2 billion tonnes per year. One of the crucial reasons for its widespread use as a building material lies in its characteristic of being fluid in the first phase, being able to fill any mould it is poured into, and then transforming into its solid state sustaining. Despite the flexibility of fluid concrete, and the advances in digital design and modelling which opens infinite possibilities in modelling complexity, no fully efficient solution has yet been developed for the production of complex concrete architectural forms. Given the need of bridging this gap between digital modelling and production processes, formwork manufacturing can drastically benefit from the inherent advantages of digital fabrication. In this context, exploiting the compressive and tensile resistance of Ultra High Performance Fibre-Reinforced Concrete and the high-resolution geometrical complexity achievable with Additive manufacturing, the thesis aims at taking on these advances in material and manufacturing processes to propose a design-driven production approach for the fabrication of formworks for multi-performative prefabricated structural concrete panels with high geometrical complexity. Specifically, on the one hand the research takes advantage of Fused Deposition Modelling (FDM) 3D Printing technology, which unlike most of conventional fabrication methods allows full optimisation of material usage, being it only deposited where needed, in the necessary quantities to fulfill the requirements. In the last decade, the constantly growing market and the diffusion of 3D printing in most production sectors of the, from design to the food industry, and now increasingly in constructions, is pushing the technology from being a mere prototyping tool to be often a key part of the production chain, thus reducing costs of machines and materials more and more. Building on material optimisation and freeform design, 3D printing is expected to lead to more sustainable and light construction thanks to more efficient design as well as lighter and smarter construction techniques which would reduce material waste. On the other hand, concrete technology is evolving towards increasingly performative materials. Ultra High Performance Fibre-Reinforced Concrete (UHPFRC) is the highest peak of such innovation process , which is a combination of high performance concrete matrix and fibre reinforcement, that, due to the high binder dosage, low water to binder ratio and relatively high fibre dosage, has superior mechanical properties and energy absorption capacity. The production of such material brings higher initial costs and energy consumption, but its use guarantee higher mechanical properties, hence the need of less material, higher life cycle of the structure and lower maintenance needed. The specific framework of application in the realm of architecture and constructions of the proposed technology is in those highly customised and complex constructive elements which are either unique or require a high degree of geometrical intricancy. Given the extreme design freedom and the high degree of complexity achievable by additive manufacturing technologies on one side, and the fluidity of concrete together with the compressive and tensile mechanical resistances of Ultra High Performance Fibre Reinforced Concrete on the other side, the thesis is looking for a novel architectural and constructive approach to complex lightweight constructions with concrete, through the development of 3D printed formworks for the production of highly performative precast concrete panels.File | Dimensione | Formato | |
---|---|---|---|
180924_LB_DRAFT_Thesis_02.pdf
non accessibile
Descrizione: Thesis
Dimensione
16.53 MB
Formato
Adobe PDF
|
16.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/143301