Anisotropy is a common feature of many biological structures. Bones, blood vessels, skin and muscles are just some examples of tissues that act or react to a stimulus in a manner dependent on the direction in which the process takes place. This peculiar characteristic is linked to the presence of gradients within the tissue that vary on microstructure and composition, such as the orientation, concentration and type of proteins forming the extracellular matrix. Gradients can be generally distinguished in both chemical and physical. In the first case, one or more chemical species vary in space, while in the second, there is a gradual change in morphology, topology and mechanical characteristics. Independently of the type, gradients can also be classified according to the assumed form, that is, to the mathematical function describing the changes in space, namely linear, radial, exponential, and sigmoidal, as well as other non-linear shapes like orthogonal. Gradient-making methods depend on the purpose of which these are applied, whether to manufacture scaffolds or substrates for regenerative therapies or in vitro models of biological structures to study cellular behaviour and as drug screening platforms. Graded substrates, scaffolds and in vitro models are generated by exploiting different techniques, such as diffusion of chemical reagents, UV-selective irradiation on photoreactive bases, variation of the substrate thickness and microfluidic systems. Graded scaffolds are instead produced according to two different approaches. By either developing several subsystems that are then assembled to create a composite scaffold having variable properties in its volume or intrinsically producing the gradient during the manufacturing process without requiring subsequent assembly. In the first case, classical techniques such as solvent casting/particulate leaching and lyophilization are used to create components having different porosities and mechanical properties that are further assembled, for example, via thermo-compression. In the second approach, centrifugation, plastic compression, freeze-casting, and rapid prototyping techniques are applied to generate a gradient in the scaffold structure. The final aim of this research is to generate engineered graded hydrogels as intestinal mucus models displaying a two-layered structure to reproduce the two-layered architecture of intestinal mucus; one that aims to reproduce the layer that is closely attached to the cellular epithelium and one that was fabricated to model the loose layer, which is not anchored to the epithelium. The former prevents intestinal bacteria and external pathogenic from reaching the cells, while allowing the exchange of substances, nutrients and other molecules including drugs. The second is a habitat suitable for bacterial growth and allows the millions of intestinal microorganisms to perform their functions in symbiosis with our body. Both functions are linked to pH, oxygen, mesh size and other viscoelastic properties varying along the thickness of the two layers. However, none of the in vitro models proposed in the literature has incorporated these variations. Current in vitro intestinal models rely on either solutions or structures mainly composed of mucins, lipids, DNA and other proteins, as well as exotic materials that are not present in vivo. Therefore, the development of an in vitro model based on graded hydrogels could provide a more realistic system that considers varying chemical composition, structure and viscoelastic properties. The first step relied on producing homogeneous hydrogels. In this way, different concentrations of alginate were crosslinked using calcium carbonate by exploiting the internal gelation of alginate, aiming to tailor the viscoelastic properties of those of the loose layer of intestinal mucus. In particular, comparisons at 0.1 and 1.0 Hz were considered relevant due to their importance in the mechanophysiology of mucus, which correspond to the intestinal motions that remove the mucus layer above cells (migrating motor complex) and to the frequency of peristalsis during digestion and absorption of nutrients, respectively. All the proposed alginate concentrations produced homogeneous hydrogels with a storage (G') and loss (G'') moduli that were in the range of human intestinal mucus values, which data is reported in the literature. In particular, homogeneous alginate hydrogels exhibited viscoelastic properties similar to the loose layer of human gastrointestinal mucus. At 0.1 Hz, both G’ and G’’ of the model were 20.12 ± 0.22 and 1.99 ± 0.08 Pa, respectively, in comparison to 24.49 ± 4.9 and 2.96 ± 0.73 Pa, respectively, reported for the human intestinal mucus. At 1.0 Hz, in its turn, both final G’ and G’’ of the model were 25.21 ± 0.96 and 2.05 ± 0.18 Pa, respectively, in comparison to those reported to the human intestinal mucus 28.10 ± 3.5 and 3.88 ± 0.46 Pa, respectively. However, the final intestinal model presented a thickness of about 4 mm, which is far from that reported to physiological intestinal mucus (approximately 0.8 mm). To verify the dependence of the viscoelastic properties of the model on thickness and investigate the possibility of scaling down its dimensions in fractions of a millimetre, alginate hydrogels were produced with variable thicknesses: 0.5, 0.8 and 1 mm.. In this thesis, the developed hydrogels were modified to produce 3D printing bioinks . A preliminary analysis was conducted on alginate and calcium carbonate concentrations to investigate the printability of alginate inks. Alginate bioinks exhibited suitable properties for printability. Time sweep, shear stress ramp, viscosity and shear recovery tests were conducted on the aforementioned bioink. The rheological data showed that the most suitable properties for printing, namely shear thinning behaviour, low yield stress, and high recovery post extrusion, were reached after one hour of crosslinking. The printing process corroborated the rheological analyses, allowing to produce printed hydrogels with a final thickness of 0.87 ± 0.08 mm, which is comparable to that of physiological intestinal mucus. In conclusion, the produced hydrogels represent the basis to define a model with rheological and structural properties comparable to those reported to physiological intestinal mucus, paving the way to future developments.
L’anisotropia è una caratteristica comune a molte strutture biologiche. Ossa, vasi sanguigni e muscoli sono solo alcuni esempi di tessuti che agisco o reagiscono ad uno stimolo in modo dipendente dalla direzione nella quale il processo avviene. Questo comportamento è legato alla presenza nel tessuto di gradienti microstrutturali o composizionali di grandezze come l’orientamento, la concentrazione e il tipo di proteine che compongono la matrice extracellulare. I gradienti possono essere generalmente distinti in gradienti chimici che fisici. Nel primo caso, una o più specie chimiche variano nello spazio, mentre nel secondo, vi è un graduale cambiamento nella morfologia, nella topologia e nelle caratteristiche meccaniche. Indipendentemente dal tipo, i gradienti possono anche essere classificati in base alla forma assunta, cioè alla funzione matematica che ne descrive i cambiamenti nello spazio. In questo senso, un gradiente si distingue lineare, radiale, esponenziale, sigmoidale e altre forme non lineari come quella ortogonale. I metodi di produzione di gradienti dipendono dallo scopo di questi ultimi, come la fabbricazione di scaffold per terapie rigenerative e substrati per studiare il comportamento cellulare, o come modelli in vitro di strutture biologiche e per studi sulla somministrazione di farmaci. Substrati graduati e modelli in vitro sono generati sfruttando diverse tecniche, come la diffusione di reagenti chimici, l'irradiazione UV-selettiva su basi polimeriche fotoreattive, la variazione dello spessore del substrato stesso e sistemi microfluidici. Gli scaffold graduati sono invece prodotti secondo due diversi approcci: creazione di sottosistemi diversi che vengono poi assemblati per creare uno scaffold composito con proprietà variabili nel suo volume; o formazione diretta del gradiente durante il processo di produzione, senza richiedere un successivo assemblaggio. Nel primo caso, le tecniche classiche come solvent casting/particulate leaching e liofilizzazione vengono utilizzate per creare componenti con porosità e proprietà meccaniche diverse poi assemblate, ad esempio mediante termo-compressione. Nel secondo approccio, le tecniche di centrifugazione, compressione plastica, congelamento e prototipazione rapida vengono applicate per generare un gradiente interno alla struttura dello scaffold. Gli idrogel finali sono stati proposti come modelli di muco intestinale. In somiglianza con il muco intestinale, i modelli hanno lo scopo finale di mostrare una struttura a due strati, uno riproducente lo strato del muco intestinale strettamente ancorato all'epitelio cellulare e uno che rappresentasse lo strato lasso che non è ancorato all'epitelio. Il primo strato ancorato impedisce ai batteri intestinali e ai patogeni esterni di raggiungere le cellule, consentendo allo stesso tempo lo scambio di sostanze, nutrienti e altre molecole, compresi i farmaci. Il secondo è un habitat adatto alla crescita batterica e consente a milioni di microrganismi intestinali di svolgere le loro funzioni in simbiosi con il nostro corpo. Entrambe le funzioni sono legate al pH, all'ossigeno, alle dimensioni delle maglie e ad altre proprietà viscoelastiche varianti lungo lo spessore dei due strati. Tuttavia, nessuno dei modelli in vitro proposti in letteratura ha incorporato questi gradienti, poiché gli attuali modelli intestinali in vitro si basano su soluzioni o strutture composte principalmente da mucine, lipidi, DNA e altre proteine, oltre a materiali che non sono presenti in vivo. Pertanto, lo sviluppo di un modello in vitro basato sulla gelificazione a gradiente degli idrogel potrebbe rispondere alla mancanza di un sistema più realistico che consideri le variazioni in composizione chimica, in struttura e in proprietà viscoelastiche nel muco che fino ad ora sono state trascurate. Per fare ciò, diverse concentrazioni di alginato sono state reticolate in modo omogeneo usando carbonato di calcio applicando il metodo della doppia siringa, con l'obiettivo di ottenere proprietà reologiche simili a quelle del muco intestinale lasso. In particolare, i confronti a 0.1 Hz e 1.0 Hz sono stati considerati rilevanti a causa della loro importanza nella meccanico-fisiologica del muco. La prima è la frequenza con cui i moti intestinali rimuovono lo strato di muco sopra le cellule (complesso motorio migrante), l'altra coincide con la frequenza della peristalsi durante la digestione e l'assorbimento dei nutrienti. Tutte le concentrazioni di alginato proposte hanno prodotto idrogel omogenei con modulo conservativo (G') e dissipativo (G'') nell'intervallo dei valori del muco intestinale umano, i cui dati sono stati ricercati in letteratura. In particolare, gli idrogel hanno mostrato proprietà viscoelastiche simili allo strato lasso del muco gastrointestinale umano. A 0.1 Hz, sia G' che G'' del modello sono risultati rispettivamente 20.12 ± 0.22 e 1.99 ± 0.08 Pa, rispetto ai valori 24.49 ± 4.9 e 2.96 ± 0.73 Pa riportati, rispettivamente, per il G’ e G’’ del muco intestinale umano. A 1.0 Hz, a sua volta, sia G’ che G’' del modello sono stati 25.21 ± 0.96 e 2.05 ± 0.18 Pa, rispettivamente paragonati a quelli riportati per muco intestinale umano 28.10 ± 3.5 e 3.88 ± 0.46 Pa. Tuttavia, il modello intestinale finale ha mostrato uno spessore di circa 4 mm, che è lontano da quello del muco intestinale fisiologico (meno di 0.8 mm). Per verificare la dipendenza delle proprietà reologiche del modello sul suo spessore e per studiare la possibilità di ridimensionarlo in frazioni di millimetro, gli idrogel di alginato sono stati prodotti a spessori variabili: 0.5, 0.8 e 1 mm. Le proprietà reologiche sono state ulteriormente risultate indipendenti dallo spessore dell'idrogel. È stato inoltre proposto un metodo di stampa 3D, adattando la composizione degli idrogeli precedentemente sviluppati. Gli inchiostri sviluppati hanno mostrato proprietà idonee per la stampabilità. Sono stati condotti time sweep test, shear stress ramp test, viscosity test and shear recovery test sul suddetto bioink per ottimizzare i tempi di stampa dopo la reticolazione omogenea. I dati reologici hanno mostrato che le proprietà più adatte per la stampa, ovvero il comportamento di assottigliamento al taglio, il basso stress di snervamento e l’elevato recupero viscoelastico post-estrusione, sono state raggiunte dopo un'ora di reticolazione. Il processo di stampa ha corroborato le analisi reologiche, consentendo di produrre un costrutto con uno spessore finale di 0.87 ± 0.08 mm. In conclusione, gli idrogeli sviluppati in questa tesi rappresentano un modello con proprietà reologiche e strutturali paragonabili a quelle riferite a muco intestinale fisiologico, ma con spessore maggiore. La stampa 3D ha premesso inoltre di controllare lo spessore di questo modello, ponendo le basi di successivi sviluppi.
Engineering bioinspired graded in vitro intestinal mucus models
SARDELLI, LORENZO
2017/2018
Abstract
Anisotropy is a common feature of many biological structures. Bones, blood vessels, skin and muscles are just some examples of tissues that act or react to a stimulus in a manner dependent on the direction in which the process takes place. This peculiar characteristic is linked to the presence of gradients within the tissue that vary on microstructure and composition, such as the orientation, concentration and type of proteins forming the extracellular matrix. Gradients can be generally distinguished in both chemical and physical. In the first case, one or more chemical species vary in space, while in the second, there is a gradual change in morphology, topology and mechanical characteristics. Independently of the type, gradients can also be classified according to the assumed form, that is, to the mathematical function describing the changes in space, namely linear, radial, exponential, and sigmoidal, as well as other non-linear shapes like orthogonal. Gradient-making methods depend on the purpose of which these are applied, whether to manufacture scaffolds or substrates for regenerative therapies or in vitro models of biological structures to study cellular behaviour and as drug screening platforms. Graded substrates, scaffolds and in vitro models are generated by exploiting different techniques, such as diffusion of chemical reagents, UV-selective irradiation on photoreactive bases, variation of the substrate thickness and microfluidic systems. Graded scaffolds are instead produced according to two different approaches. By either developing several subsystems that are then assembled to create a composite scaffold having variable properties in its volume or intrinsically producing the gradient during the manufacturing process without requiring subsequent assembly. In the first case, classical techniques such as solvent casting/particulate leaching and lyophilization are used to create components having different porosities and mechanical properties that are further assembled, for example, via thermo-compression. In the second approach, centrifugation, plastic compression, freeze-casting, and rapid prototyping techniques are applied to generate a gradient in the scaffold structure. The final aim of this research is to generate engineered graded hydrogels as intestinal mucus models displaying a two-layered structure to reproduce the two-layered architecture of intestinal mucus; one that aims to reproduce the layer that is closely attached to the cellular epithelium and one that was fabricated to model the loose layer, which is not anchored to the epithelium. The former prevents intestinal bacteria and external pathogenic from reaching the cells, while allowing the exchange of substances, nutrients and other molecules including drugs. The second is a habitat suitable for bacterial growth and allows the millions of intestinal microorganisms to perform their functions in symbiosis with our body. Both functions are linked to pH, oxygen, mesh size and other viscoelastic properties varying along the thickness of the two layers. However, none of the in vitro models proposed in the literature has incorporated these variations. Current in vitro intestinal models rely on either solutions or structures mainly composed of mucins, lipids, DNA and other proteins, as well as exotic materials that are not present in vivo. Therefore, the development of an in vitro model based on graded hydrogels could provide a more realistic system that considers varying chemical composition, structure and viscoelastic properties. The first step relied on producing homogeneous hydrogels. In this way, different concentrations of alginate were crosslinked using calcium carbonate by exploiting the internal gelation of alginate, aiming to tailor the viscoelastic properties of those of the loose layer of intestinal mucus. In particular, comparisons at 0.1 and 1.0 Hz were considered relevant due to their importance in the mechanophysiology of mucus, which correspond to the intestinal motions that remove the mucus layer above cells (migrating motor complex) and to the frequency of peristalsis during digestion and absorption of nutrients, respectively. All the proposed alginate concentrations produced homogeneous hydrogels with a storage (G') and loss (G'') moduli that were in the range of human intestinal mucus values, which data is reported in the literature. In particular, homogeneous alginate hydrogels exhibited viscoelastic properties similar to the loose layer of human gastrointestinal mucus. At 0.1 Hz, both G’ and G’’ of the model were 20.12 ± 0.22 and 1.99 ± 0.08 Pa, respectively, in comparison to 24.49 ± 4.9 and 2.96 ± 0.73 Pa, respectively, reported for the human intestinal mucus. At 1.0 Hz, in its turn, both final G’ and G’’ of the model were 25.21 ± 0.96 and 2.05 ± 0.18 Pa, respectively, in comparison to those reported to the human intestinal mucus 28.10 ± 3.5 and 3.88 ± 0.46 Pa, respectively. However, the final intestinal model presented a thickness of about 4 mm, which is far from that reported to physiological intestinal mucus (approximately 0.8 mm). To verify the dependence of the viscoelastic properties of the model on thickness and investigate the possibility of scaling down its dimensions in fractions of a millimetre, alginate hydrogels were produced with variable thicknesses: 0.5, 0.8 and 1 mm.. In this thesis, the developed hydrogels were modified to produce 3D printing bioinks . A preliminary analysis was conducted on alginate and calcium carbonate concentrations to investigate the printability of alginate inks. Alginate bioinks exhibited suitable properties for printability. Time sweep, shear stress ramp, viscosity and shear recovery tests were conducted on the aforementioned bioink. The rheological data showed that the most suitable properties for printing, namely shear thinning behaviour, low yield stress, and high recovery post extrusion, were reached after one hour of crosslinking. The printing process corroborated the rheological analyses, allowing to produce printed hydrogels with a final thickness of 0.87 ± 0.08 mm, which is comparable to that of physiological intestinal mucus. In conclusion, the produced hydrogels represent the basis to define a model with rheological and structural properties comparable to those reported to physiological intestinal mucus, paving the way to future developments.File | Dimensione | Formato | |
---|---|---|---|
ENGINEERING BIOINSPIRED GRADED IN VITRO INTESTINAL MUCUS MODELS.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
4.72 MB
Formato
Adobe PDF
|
4.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/143395