Because of the stringent regulations regarding noise and emissions imposed by Flightpath 2050 and SRIA, a step change in gas turbine technology is required. This work investigates the benefits and feasibility of intercooling with Nutating Disc Topping Cycle in an Open Rotor system, for short haul missions. Since the Nutating Disc is recognised as a high-power density engine, its integration with an intercooler can potentially lead to a greater specific power, lower specific fuel consumption and fuel burn. The intercooler chosen is a two-pass cross-flow with an involute spiral configuration. A MATLAB model was developed to evaluate the intercooler effectiveness, pressure losses and weight. A parametric study and a surface response analysis, at top of climb, of the aforementioned quantities, were performed integrating this model with the overall engine one developed in PROOSIS. Exploiting this analysis, the specific fuel consumption at top of climb, cruise, and end of runway were invesitgated. The improvement obtained is of 14.4% at top of climb, 13.6% at cruise and 50.3% at end of runway, considering the reference values for the year 2050. Finally, the fuel burn benefit was estimated for a 3500 NM mission. A reduction of 65.1% was obtained compared to the correspondent year 2000 engine. Future works involve: the development of a NOx emissions prediction model, a more reliable CFD study for the specific geometry, new solutions to improve the intercooler performances during the take-off, like pumps or fan, a specific analysis for the fouling development and a direct operating cost model.
Assieme al Flightpath 2050 e SRIA sono stati imposti stringenti limiti nelle emissioni e nel rumore tollerati. Questi hanno spinto i progettisti a ricercare design rivoluzionari, facendoli sperimentare soluzioni come ad esempio il Nutating Disc e l’Open Rotor. In questa tesi, l’integrazione tra un intercooler e un Nutating Disc Topping Cycle in un Open Rotor viene discussa. L’intercooler scelto è un modello a flussi incrociati con tubi avvolti a spirale a doppio passaggio. Attraverso un codice sviluppato in MATLAB sono stati riprodotti l’efficacia, le perdite di carico e il peso dell’intercooler. Successivamente, integrandolo in un secondo modello sviluppato in PROOSIS, in grado di riprodurre le prestazioni dell’intero motore, è stato fatto uno studio parametrico delle precedenti quantità. I risultati sono stati raccolti in una “superficie delle risposte”. Sfruttando quest’analisi, il consumo specifico in corrispondenza del limite superiore di salita (TOC), in crociera (CR) e a fine pista (EOR) sono stati investigati. Il miglioramento è stato del 14.4% per TOC, 13.6% per CR e 50.3% per EOR, rispetto ai valori di riferimento per l’anno 2050. Infine, è stato calcolato il guadagno, in termini di consumo di carburante, per una missione di 3500 NM. Una riduzione del 65.1% è stata ottenuta in confronto al motore di riferimento del 2000. Lavori futuri comprendono: lo sviluppo di un modello per le emissioni, uno studio più preciso della geometria tramite CFD, nuove soluzioni per migliorare le prestazioni dell’intercooler al decollo, come pompe o ventole, un modello per lo sviluppo delle incrostazioni e un modello per il calcolo dei costi.
Assessment of an intercooler integrated with a nutating topping cycle in an open rotor engine
MORO, FRANCESCO
2017/2018
Abstract
Because of the stringent regulations regarding noise and emissions imposed by Flightpath 2050 and SRIA, a step change in gas turbine technology is required. This work investigates the benefits and feasibility of intercooling with Nutating Disc Topping Cycle in an Open Rotor system, for short haul missions. Since the Nutating Disc is recognised as a high-power density engine, its integration with an intercooler can potentially lead to a greater specific power, lower specific fuel consumption and fuel burn. The intercooler chosen is a two-pass cross-flow with an involute spiral configuration. A MATLAB model was developed to evaluate the intercooler effectiveness, pressure losses and weight. A parametric study and a surface response analysis, at top of climb, of the aforementioned quantities, were performed integrating this model with the overall engine one developed in PROOSIS. Exploiting this analysis, the specific fuel consumption at top of climb, cruise, and end of runway were invesitgated. The improvement obtained is of 14.4% at top of climb, 13.6% at cruise and 50.3% at end of runway, considering the reference values for the year 2050. Finally, the fuel burn benefit was estimated for a 3500 NM mission. A reduction of 65.1% was obtained compared to the correspondent year 2000 engine. Future works involve: the development of a NOx emissions prediction model, a more reliable CFD study for the specific geometry, new solutions to improve the intercooler performances during the take-off, like pumps or fan, a specific analysis for the fouling development and a direct operating cost model.File | Dimensione | Formato | |
---|---|---|---|
2018_12_Moro_F.pdf
solo utenti autorizzati dal 10/12/2019
Descrizione: Thesis text
Dimensione
6.17 MB
Formato
Adobe PDF
|
6.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/143972