Additive manufacturing (AM) is creating breakthrough opportunities in the manufacturing industry and, in particular, in the aerospace field. In order to fully exploit AM opportunities, new design and production chain procedures must be developed and implemented. This work is focused on the analysis of steel powders for specific AM implementations as the direct metal deposition (DMD) or powder bed fusion (PBF). In these techniques an understanding of the effects on the final product of the initial powder characteristics and of their reactivity is of paramount importance. Two different industrial stainless steel powders (labeled as CGN and PM) were taken as reference and characterized in terms of their particle size distribution, morphology, composition, slow heating rate and laser irradiation reactivity, and flowability. The same investigations were performed on mechanically activated powders produced by high-energy ball milling. The mechanically activated powders were produced using acetone as process controlling agent (PCA). The activation process was performed in order to modify the surface texture of the virgin, spherical powders, thus obtaining higher specific surface area and, eventually, an increased reactivity. The activated powders feature a different particle size and morphology with respect to the starting materials. The virgin CGN powder shows a mass-based average diameter (D_43) of 39.97 μm, with spherical particles. The powder C-A3 (produced with ball-to-powder ratio of 5:1) featured a D_43 of 68.10 μm, and flake particles. Moreover, the specific surface area of the powders changed from 0.052 m^2⁄g (CGN) to 0.136 m^2⁄g (C-A3). The same powder was characterized by a higher reactivity at slow heating rate, with mass increase in thermogravimetry analysis (90% air + 10% argon, 20 K⁄min) of 32.18%. Under the same operating conditions, the starting CGN achieved a 17.21% mass increase. In spite of this difference, the behaviour of the powders under laser irradiation at 200W showed no marked differences. At the same time, virgin and activated powders showed no differences in their accelerated ageing behaviour. The change in the particle morphology between CGN and C-A3 was evaluated in terms of its impact on flowability. Achieved results show that nevertheless activated powders flowability decreases with respect to starting materials, the milling process increases the flowability of blend powders. The powders obtained mixing C-A3 with CGN powder leads to an increase in flowability up to 9.3%.
L’Additive manufacturing (AM) sta creando nuove opportunità nell’industria manufatturiera ed in particolare nel campo aerospaziale. Per sfruttare a pieno le possibilità offerte dall’AM, devono essere sviluppati ed implementati nuovi design e meccanismi di produzione. Questo lavoro si concentra sull’analisi di polveri di acciaio per specifiche applicazioni nell’AM, come la “direct metal deposition” (DMD) o la “powder bed fusion” (PBF). In queste tecniche è di fondamentale importanza carpire gli effetti delle caratteristiche iniziali e della reattività delle polveri metalliche sulle caratteristiche finali del prodotto. Come riferimento sono state considerate due differenti polveri di acciaio (etichettate come CGN e PM) e sono state caratterizzate in termini di distribuzione della dimensione delle particelle, morfologia, composizione, reattività a basso rateo di calore e irradiazione laser, e scorrevolezza (flowability). Le stesse analisi sono state effettuate sulle polveri prodotte meccanicamente tramite mulino a sfere. Le polveri attivate sono state prodotte utilizzando differenti quantità di acetone impiegato come controllore di processo. L’attivazione è stata utilizzata per modificare la superficie delle sferiche polveri vergini, ottenendo di conseguenza superfici specifiche più elevate e un eventuale incremento di reattività. Le polveri prodotte meccanicamente hanno mostrato una differente dimensione delle particelle e morfologia rispetto ai materiali di partenza. La polvere vergine CGN, con particelle sferiche, ha evidenziato un aumento del diametro-massa medio (D_43) di 39.97 μm. La polvere C-A3 (prodotta con un rapporto sfere-polvere di 5:1) ha mostrato un D_43 di 68.10 μm e particelle piatte. Inoltre, la superficie specifica è passata da 0.052 m^2⁄g (CGN) a 0.136 m^2⁄g (C-A3). Quest’ultima ha anche mostrato una più alta reattività a bassi ratei di calore, con un aumento di massa nell’analisi termogravimetrica (90% aria + 10% Argon, 20 K⁄min) di 32.18%. Sotto le stesse condizioni operative, la polvere vergine CGN ha raggiunto un aumento di massa del 17.21%. Nonostante queste differenze, le polveri soggette a irradiazione laser a 200 W non hanno evidenziato particolari differenze. Allo stesso tempo, le polveri vergini e attivate non hanno mostrato differenze nel loro processo di invecchiamento. Il cambiamento di morfologia tra CGN e C-A3 è stato valutato in termini di impatto sulla scorrevolezza. I risultati ottenuti hanno mostrato come nonostante la scorrevolezza delle polveri attivate diminuisca, a seguito del processo di attivazione la scorrevolezza delle polveri miscelate migliori. In particolare, le polveri ottenute miscelando la polvere attivata C-A3 con la polvere vergine CGN hanno condotto ad un aumento della scorrevolezza fino al 9.3%.
Mechanically activated powders for additive manufacturing : reactivity and flowability
ROCCATAGLIATA, GIANPIETRO
2017/2018
Abstract
Additive manufacturing (AM) is creating breakthrough opportunities in the manufacturing industry and, in particular, in the aerospace field. In order to fully exploit AM opportunities, new design and production chain procedures must be developed and implemented. This work is focused on the analysis of steel powders for specific AM implementations as the direct metal deposition (DMD) or powder bed fusion (PBF). In these techniques an understanding of the effects on the final product of the initial powder characteristics and of their reactivity is of paramount importance. Two different industrial stainless steel powders (labeled as CGN and PM) were taken as reference and characterized in terms of their particle size distribution, morphology, composition, slow heating rate and laser irradiation reactivity, and flowability. The same investigations were performed on mechanically activated powders produced by high-energy ball milling. The mechanically activated powders were produced using acetone as process controlling agent (PCA). The activation process was performed in order to modify the surface texture of the virgin, spherical powders, thus obtaining higher specific surface area and, eventually, an increased reactivity. The activated powders feature a different particle size and morphology with respect to the starting materials. The virgin CGN powder shows a mass-based average diameter (D_43) of 39.97 μm, with spherical particles. The powder C-A3 (produced with ball-to-powder ratio of 5:1) featured a D_43 of 68.10 μm, and flake particles. Moreover, the specific surface area of the powders changed from 0.052 m^2⁄g (CGN) to 0.136 m^2⁄g (C-A3). The same powder was characterized by a higher reactivity at slow heating rate, with mass increase in thermogravimetry analysis (90% air + 10% argon, 20 K⁄min) of 32.18%. Under the same operating conditions, the starting CGN achieved a 17.21% mass increase. In spite of this difference, the behaviour of the powders under laser irradiation at 200W showed no marked differences. At the same time, virgin and activated powders showed no differences in their accelerated ageing behaviour. The change in the particle morphology between CGN and C-A3 was evaluated in terms of its impact on flowability. Achieved results show that nevertheless activated powders flowability decreases with respect to starting materials, the milling process increases the flowability of blend powders. The powders obtained mixing C-A3 with CGN powder leads to an increase in flowability up to 9.3%.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
28.44 MB
Formato
Adobe PDF
|
28.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/144009