The hottest geothermal fields in Iceland are extremely appealing in terms of electricity production potential. Started 20 years ago, the Iceland Deep Drilling Project aims at exploring high-temperature geothermal systems close to magmatic chambers. After the failure of the IDDP-1 Krafla open well, abandoned after drilling into magma at a 2-km depth, the use of closed pipe technology to produce superheated steam has not been assessed close to magmatic chambers. Based on a coaxial deep borehole exchanger geometry, this thesis implements a procedure in which an analytical-empirical heat transfer model contributes at assessing the behaviour of the geothermal system. The analytical model has been developed to estimate the thermophysical properties of water flowing in the well, including the two-phase transition, as well as the pressure profile. In addition, the location along the well where the saturated boiling occurs is investigated with numerical simulations based on an axisymmetric mesh. Three cases, based on different mass flow rates, were tested to assess the robustness of the empirical methodology. It is shown that a comprehensive analytical procedure, with the inclusion of a boiling model, can provide a realistic assessment of the temperature trend in the borehole heat exchanger and highlights a satisfactory heat transfer behaviour for the geometry. Finally, the power production potential of the solution has been assessed implementing the heat exchanger in a geothermal dry-steam-like Rankine cycle, highlighting the competitivity of the solution for small-medium size applications. This opportunity, however, is affected by a limitation of the admissible mass flow rates and a significant sensibility to the geothermal gradient distribution.
I più caldi giacimenti geotermici in Islanda sono estremamente attrattivi per il loro potenziale in termini di generazione di potenza. Avviato 20 anni fa, l’Iceland Deep Drilling Project si propone di esplorare sistemi geotermici ad alta temperatura in prossimità di camere magmatiche. Dopo il fallimento del pozzo IDDP-1, sito in Krafla, abbandonato dopo aver perforato una sacca magmatica a 2 km di profondità, l’uso della tecnologia a pozzo chiuso per produrre vapore surriscaldato in prossimità di camere magmatiche non è stata ancora esaminata. Basandosi su una geometria coassiale (Coaxial Borehole Heat Exchanger), questa tesi implementa una procedura in cui un modello analitico di scambio termico contribuisce a valutare il comportamento del sistema geotermico. Il modello è stato sviluppato per stimare le proprietà termofisiche dell'acqua che scorre nel pozzo, compresa la transizione di fase, nonché il profilo di pressione. Inoltre, la regione del pozzo interessata da ebollizione satura è stata analizzata con simulazioni numeriche basate su una mesh assialsimmetrica. Tre casi, basati su diverse portate massiche, sono stati testati per valutare la robustezza del modello. I risultati evidenziano che la procedura analitica, che include un modello di transizione di fase, può fornire una stima realistica dell'andamento della temperatura nello scambiatore geotermico ed evidenzia una buona efficienza termica per la geometria in esame. Infine, le prestazioni in termini di produzione di potenza dello scambiatore sono state valutate teorizzandone l’installazione in un ciclo Rankine geotermico, del tipo a vapore secco, evidenziando la competitività della soluzione per applicazioni di piccole-medie dimensioni. Questa opportunità, tuttavia, è influenzata da una limitazione della portata massica ammissibile e da una significativa sensibilità alla distribuzione del gradiente geotermico.
Analytical modelling of a coaxial borehole heat exchanger for geothermal applications
AMBRUSO, ALESSIO
2017/2018
Abstract
The hottest geothermal fields in Iceland are extremely appealing in terms of electricity production potential. Started 20 years ago, the Iceland Deep Drilling Project aims at exploring high-temperature geothermal systems close to magmatic chambers. After the failure of the IDDP-1 Krafla open well, abandoned after drilling into magma at a 2-km depth, the use of closed pipe technology to produce superheated steam has not been assessed close to magmatic chambers. Based on a coaxial deep borehole exchanger geometry, this thesis implements a procedure in which an analytical-empirical heat transfer model contributes at assessing the behaviour of the geothermal system. The analytical model has been developed to estimate the thermophysical properties of water flowing in the well, including the two-phase transition, as well as the pressure profile. In addition, the location along the well where the saturated boiling occurs is investigated with numerical simulations based on an axisymmetric mesh. Three cases, based on different mass flow rates, were tested to assess the robustness of the empirical methodology. It is shown that a comprehensive analytical procedure, with the inclusion of a boiling model, can provide a realistic assessment of the temperature trend in the borehole heat exchanger and highlights a satisfactory heat transfer behaviour for the geometry. Finally, the power production potential of the solution has been assessed implementing the heat exchanger in a geothermal dry-steam-like Rankine cycle, highlighting the competitivity of the solution for small-medium size applications. This opportunity, however, is affected by a limitation of the admissible mass flow rates and a significant sensibility to the geothermal gradient distribution.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Ambruso.pdf
Open Access dal 03/12/2019
Descrizione: Ambruso Alessio, MSc Thesis
Dimensione
6.53 MB
Formato
Adobe PDF
|
6.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/144182