Wastewater containing rare-earth metals (REMs) creates a serious concern to the environment and human health but also represents a potential resource: the small global reserve of REMs limits their use in the steady growing high-technology applications. Due to its many advantages adsorption is considered the preferred technology for metal water purification and metal recovery. Usually conventional sorbent solids are used in powder state involving the adaptation of a batch operation to technical applications which works in continuous. This last aspect may reduce the potential optimality of the industrial process. Consequently, this thesis work had been focused in evaluating REMs removal efficiency of the novel reduced graphene oxide (rGO) towards conventional adsorbents (clay and activated carbon). The rGO has been pointed out in recent literature as a membrane material, opening up the opportunity to perform continuous adsorption processes. The experimental activity has been divided in two major parts. The first regards uptake tests in a pre-industrialization perspective and the second, uptake tests at low concentrations for more diluted wastewater. Two techniques have been developed to recreate batch and continuous operation. Adsorbent solids were used directly in podwer state for the batch testing and configured into membranes for continuous testing. Uptake tests were performed using lanthanum ionic solutions (chosen as a representing element of REMs in wastewater) and same operational conditions achieving reliable comparisons. The developed dynamic technique has been proved to be potentially comparable with batch processes for diluted concentrations of lanthanum. Instead, at high concentrations, the dynamic method resulted to have a competitive edge. Special focus has been paid to the characterization of adsorbent solids before and after uptake testing, by one or more of these techniques: XRD, Raman spectroscopy, FT-IR, SEM and optical microscopy. Quantification of metal ions of solid phases has been performed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES).
La contaminazione dell’acqua con terre rare costituisce un problema per l’ambiente e la salute umana, ma è anche una risorsa potenziale: la riserva globale di terre rare è molto ridotta, con applicazioni limitate al settore dell’alta tecnologia, che tuttavia è sempre in continua crescita. Grazie ai vantaggi che comporta, l’adsorbimento è considerato la migliore tecnologia per la purificazione di acque con recupero di metalli. Queste tecnologie utilizzano come solidi adsorbenti i carboni attivi e in alcuni casi le argille, per i quali è necessario adattare un processo batch per applicazioni industriali che di solito lavorano in continuo. Di conseguenza, quest’ultimo aspetto può ridurre la potenziale efficienza dell’intero processo industriale. La letteratura più recente punta su rGO come ottimo materiale per membrane, aprendo nuove prospettive per i processi di adsorbimento in continuo. Sulla base di ciò, nella presente tesi si è valutata l’efficienza di rimozione del lantanio (come rappresentante delle terre rare) da parte dell’ossido di grafene ridotto confrontato con adsorbenti convenzionali, ai fini della purificazione delle acque. L’attività sperimentale basata su prove di assorbimento è stata suddivisa in due parti principali. La prima in una prospettiva preindustriale e la seconda con acque reflue maggiormente diluite. Sono state sviluppate due tecniche che riproducono rispettivamente processi batch e continui. Per le prove in continuo sono state sviluppate membrane costituite dai solidi adsorbenti, i quali sono stati utilizzati direttamente in polvere per le prove batch. Il metodo dinamico ha riscontrato un vantaggio competitivo per concentrazioni di lantanio elevate, mentre risulta paragonabile alla tecnica statica per concentrazioni più diluite. La caratterizzazione dei solidi, prima e dopo il processo di adsorbimento, sono state caratterizzate da diverse tecnologie: diffrazione di raggi X (XDR), spettroscopia Raman, FT-IR, SEM e microscopia ottica. La fase liquida ottenuta da ciascuna prova è stata analizzata mediante ICP-OES, ai fini di valutate il contenuto di ioni metallici.
Rare-earth metal capture from industrial wastewater : a comparison of conventional adsorbent solids and reduced graphene oxide for batch and continuous applications
MONTEAGUDO ARREBOLA, MARIA JOSE
2018/2019
Abstract
Wastewater containing rare-earth metals (REMs) creates a serious concern to the environment and human health but also represents a potential resource: the small global reserve of REMs limits their use in the steady growing high-technology applications. Due to its many advantages adsorption is considered the preferred technology for metal water purification and metal recovery. Usually conventional sorbent solids are used in powder state involving the adaptation of a batch operation to technical applications which works in continuous. This last aspect may reduce the potential optimality of the industrial process. Consequently, this thesis work had been focused in evaluating REMs removal efficiency of the novel reduced graphene oxide (rGO) towards conventional adsorbents (clay and activated carbon). The rGO has been pointed out in recent literature as a membrane material, opening up the opportunity to perform continuous adsorption processes. The experimental activity has been divided in two major parts. The first regards uptake tests in a pre-industrialization perspective and the second, uptake tests at low concentrations for more diluted wastewater. Two techniques have been developed to recreate batch and continuous operation. Adsorbent solids were used directly in podwer state for the batch testing and configured into membranes for continuous testing. Uptake tests were performed using lanthanum ionic solutions (chosen as a representing element of REMs in wastewater) and same operational conditions achieving reliable comparisons. The developed dynamic technique has been proved to be potentially comparable with batch processes for diluted concentrations of lanthanum. Instead, at high concentrations, the dynamic method resulted to have a competitive edge. Special focus has been paid to the characterization of adsorbent solids before and after uptake testing, by one or more of these techniques: XRD, Raman spectroscopy, FT-IR, SEM and optical microscopy. Quantification of metal ions of solid phases has been performed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES).File | Dimensione | Formato | |
---|---|---|---|
2018_12_Monteagudo_Arrebola.pdf.pdf
non accessibile
Descrizione: Thesis text
Dimensione
5.48 MB
Formato
Adobe PDF
|
5.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/144312