It is presented in a Monte Carlo simulation framework the approach for the evaluation of hybrid local volatility models. In particular, we consider the stochastic local volatility model and the local volatility model incorporating stochastic interest rates. For both model classes a particular (conditional) expectation needs to be evaluated, which cannot be extracted from the market and is expensive to compute. We establish accurate and `cheap to evaluate' approximations for the expectations by means of the stochastic collocation method combined with standard regression techniques. Monte Carlo pricing experiments confirm that the method is highly accurate and fast.
In questo elaborato verrà presentato un metodo di simulazione di tipo Monte Carlo sviluppato da A. Van Der Stoep, L.A. Grzelak e C.W. Oosterlee e divulgato nel 2017 sul Quantitave Finance vol.17 col nome di A Novel Monte Carlo Approach to Hybrid Local Volatility Models ; tale metodo risulta particolarmente effciente quando usato per modelli ibridi a volatilita' locale. Nel dettaglio, verranno considerati modelli noti come SABR e Heston, modificati in modo da essere a volatilita' locale stocastica (SLV), e modelli a volatilita' locale con tasso di interesse stocastico, con specifica dinamica alla Hull-White. Per entrambi i modelli risulta necessario calcolare una particolare attesa condizionata e tale scopo viene raggiunto tramite una combinazione di collocamento stocastico e regressione lineare. Simulazioni Monte Carlo infine confermano la bontà del modello
Metodo Monte Carlo per modelli ibridi a volatilità locale
CAPPO, ALESSANDRO
2017/2018
Abstract
It is presented in a Monte Carlo simulation framework the approach for the evaluation of hybrid local volatility models. In particular, we consider the stochastic local volatility model and the local volatility model incorporating stochastic interest rates. For both model classes a particular (conditional) expectation needs to be evaluated, which cannot be extracted from the market and is expensive to compute. We establish accurate and `cheap to evaluate' approximations for the expectations by means of the stochastic collocation method combined with standard regression techniques. Monte Carlo pricing experiments confirm that the method is highly accurate and fast.File | Dimensione | Formato | |
---|---|---|---|
2018_12_Cappo.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/144431